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Abstract

Network intermediaries relay traffic between web servers and clients, and are often de-

ployed on the Internet to provide improved performance or security. Unfortunately, net-

work intermediaries can actually do more harm than good. In this thesis, we articulate

the dangers of network intermediaries, which motivates the need for pervasive encryption.

We further seek to understand the reasons why encryption isn’t more widely deployed

and fix them.

The existence of network intermediaries makes web security particularly challenging,

considering that network intermediaries may operate (1) erroneously, or (2) maliciously.

We verified that 7% of Internet users are behind proxies that allow either IP hijacking

attacks or cache poisoning attacks, and that 0.2% of encrypted connections on a large

global website were intercepted without authorization. While the need for encryption is

clear, many websites have not deployed Transport Layer Security (TLS) due to perfor-

mance concerns. We identified three opportunities to reduce the performance overhead of

TLS without sacrificing security: (1) prefetching and prevalidating certificates, (2) using

short-lived certificates, and (3) configuring elliptic curve cryptography for forward secrecy.
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Chapter 1

Introduction

The World Wide Web has grown into a versatile platform that supports an increasing

variety of computing tasks. Modern web applications not only deliver static content,

but also offer rich interactive experiences such as managing personal communications and

processing credit card purchases. As web applications nowadays often involve handling

sensitive user information, security is absolutely critical. Arguably, the web platform has

been successful due to providing the security guarantee that users can safely visit arbitrary

websites and execute scripts provided by those sites. Essentially, browsers mediate how

web applications can access the user’s network according to a handful of important re-

strictions, known as the same-origin policy [1]. However, web security can be challenging

since the platform is still rapidly evolving and new functionalities are constantly added.

Moreover, the interactions with the underlying network transport path, in particular the

unpredictable behaviors of certain network intermediaries, are still not fully understood.

Network intermediaries are servers (or applications) that relay network packets be-

tween clients and servers (e.g., acting as the network’s default gateway). Network in-

termediaries have been quite commonly deployed across the Internet for various useful

purposes, including improving performance (e.g., caching static web resources) and im-

proving security (e.g., monitoring and filtering malicious software). However, network

1
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intermediaries can actually cause more harm than good. Unsurprisingly, a dishonest net-

work intermediary that acts maliciously could steal the user’s unencrypted data (e.g.,

Firesheep [2]). The less obvious argument is that, a seemingly benign network intermedi-

ary could also severely degrade security (e.g., due to mis-implementations). For instance,

Auger [3] described how a web attacker can leverage transparent proxies to establish con-

nections with any host accessible by the proxy, including hosts within the user’s private

network. Even worse, we demonstrate new attacks that allow a web attacker can poison

a transparent proxy’s cache for arbitrary URLs, causing all users of the proxy to receive

the attacker’s malicious content [4].

Rather than solely wishing all misbehaving intermediaries (including dishonest inter-

mediaries, as well as benign but mis-implemented intermediaries) to be removed from

the Internet, a readily available solution to protect sensitive web communications is the

Transport Layer Security (TLS) [5] encryption protocol. With TLS enabled, web appli-

cations and browsers can cryptographically ensure that private communications are not

eavesdropped or tampered during transit, especially over untrusted networks. Despite

that TLS has been supported across major platforms and software libraries, many web-

sites still have not deployed TLS. One of the frequently-cited reasons is that using TLS

imposes a significant performance penalty. Indeed, TLS induces some computational

overhead and, even more so, adds round-trip latencies when establishing connections.

Moreover, existing studies [6] have indicated that website slowdowns further results in

loss of users, reputation and revenue.

In light of these existing problems, there are two major research questions that we

aimed to answer in this thesis:

Q1: How prevalent are the harmful network intermediaries on the Internet?
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Q2: How can we improve the performance of TLS (and encourage adoption)?

To answer research question Q1, we designed Internet experiments to detect mis-

behaving network intermediaries in the wild, including mis-implemented and malicious

intermediaries. To detect mis-implemented intermediaries, we leveraged advertisement

networks to demonstrate web-based attacks against victim servers in our laboratory. To

detect malicious intermediaries, we developed a novel method to detect unauthorized

interception of TLS connections, by observing the server’s certificate from the client’s

perspective, and experimented our system on a large global website.

For research question Q2, we studied the current TLS protocol and proposed three

ideas to reduce the performance overhead without sacrificing security, as follows:

• Browsers can prefetch and prevalidate TLS certificates of websites to reduce a sig-

nificant portion of the initial connection time.

• Certificate authorities (CAs) can issue short-lived certificates to websites, reducing

the client-side latencies due to online certificate revocation lookups.

• When enabling TLS forward secrecy, websites can use elliptic curve cryptography

to improve performance over traditional RSA cipher suites.

1.1 Threat Models

To study the browser’s ability to protect users from misbehaving network intermediaries,

we consider two threat models that are most commonly used for analyzing the security

of web browsers, including (1) the web attacker and (2) the network attacker. We study

how these two types of attackers may leverage network intermediaries to cause harm.
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1.1.1 Web Attacker

The web attacker, proposed by Jackson [7], is a malicious principal who controls its own

web servers and domain names. Furthermore, it is assumed that the victim user visits the

web attacker’s website and renders malicious content in the user’s browser (for instance,

displaying an advertisement banner from the web attacker). We note that the web attacker

is still constrained by the browser’s security policy and that merely rendering the attacker’s

content is sufficient (without user interaction). We do not assume that the web attacker

employs a low-level exploit (e.g., buffer overflow in the browser implementation that can

execute arbitrary code) to bypass the browser’s security policy, nor do we assume that

the user mistakenly inputs any sensitive information on the web attacker’s website.

While the web attacker can control the network traffic sent from its own servers, it

does not have direct access to the network connections between the browser and other

websites. The web attacker cannot eavesdrop or modify the user’s network traffic with

other sites, nor can it generate spoofed responses that purport to be from some other

website. However, we consider that some network intermediaries may be implemented

erroneously by a benign operator, such that the relayed traffic might be mis-handled

under certain circumstances.

1.1.2 Network Attacker

A network attacker is a malicious principal who has direct control over the user’s network

connections. For example, a network attacker is capable of setting up a malicious WiFi

hotspot, such that all of the user’s traffic is sent through the attacker’s router. It is

assumed that network attackers have all the abilities of a web attacker. This is evident,

since the network attacker can intercept HTTP requests and inject malicious responses

that purport to come from a web attacker’s website. Similarly, it is assumed that the
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network attacker does not have access to secrets stored on other web servers, nor does it

have special access to the client’s machine.

Such an attacker could intercept network connections between the user and the le-

gitimate website, and choose to eavesdrop the user’s network traffic (known as a passive

network attacker), or even modify the user’s network packets (known as an active net-

work attacker). Notably, the Transport Layer Security (TLS) [5] protocol was designed

to secure communications against network attackers.

1.1.3 Out-of-Scope Threats

We do not consider a number of related threats. For example, in a malware attack, the

attacker runs malicious software on the user’s machine. Such attackers are capable of

bypassing browser-based defenses completely, since the malware could possibly overwrite

the user’s browser with a custom-built executable, or read confidential data from the

machine’s storage or memory. Malware attackers can also tap into the user’s network

interfaces, thus are assumed have all abilities of a network attacker.

Another type of attack, called phishing, lures the user to enter their account passwords

and other personal information on the attacker’s website (that is disguised as another

legitimate site, such as a popular bank). Phishing web sites can copy the appearance

of the victim web site, and often use carefully selected domains (e.g., goog1e.com) or

URLs to confuse the users to believe that they are actually visiting a legitimate site.

In practice, attackers can send forged emails to the victim that appear to be from a

trusted friend (generally known as social engineering), containing a link to the attacker’s

site. Although phishing attackers have identical abilities of a web attacker, the additional

assumption is that the user does not accurately check the browser’s URL address bar and

other security-related indicators.
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Cross-site scripting (XSS) is a type of web site vulnerability that allows the attacker’s

malicious scripts to be injected and executed on a legitimate site. XSS attacks are known

to bypass the browser’s security policies and exfiltrate sensitive information from the

victim’s browser. In our work, we assume that sites correctly deploy XSS defenses (e.g.,

HTML escaping), and consider new web attacks that can succeed even without XSS

vulnerabilities.

1.2 Browser Network Access Policies

In this section, we review the network access mechanisms browsers provide to web ap-

plications in the context of the web attacker threat model described in Section 1.1.1. In

particular, we consider a network topology in which the user connects to the Internet via

a transparent proxy, as is common in enterprise networks. The transparent proxy inter-

cepts outbound HTTP requests, perhaps to monitor employee network access, to enforce

a security policy, or to accelerate web traffic.

The browser is tasked to enforce a set of security policies that prevent malicious

web sites from interacting arbitrarily with other hosts from the client’s IP address. Our

assumption is that the victim user visits the malicious web site, that the browser properly

enforces its security policy, and that the attacker has no direct control over the network

intermediaries. The relevant question, then, is what security policy should the browser

enforce on the malicious web site’s network access?

1.2.1 Same-Origin Policy

One natural response to the threat of web attackers is to simply forbid web applications

running in the browser from communicating with any server other than the one hosting

the application. This model, called the same-origin policy, was first introduced for Java
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applets. Java was originally designed as a general purpose programming language and

so, unsurprisingly, offers generic networking primitives, including an API that lets the

programmer request the virtual machine to open a raw socket to an arbitrary network

address and port. If the virtual machine fulfilled these requests unconditionally, these

API would be extremely dangerous. For this reason, Java allows network connections

only to the source of the Java bytecode.1

Unfortunately, Java’s notion of “source” has proved to be quite problematic. One

natural definition of “source” is to simply compare host names, but there is no guarantee

that the same host name will always be bound to servers controlled by the same entity.

In particular, if the Java virtual machine does its own name resolution, then the system

becomes vulnerable to DNS rebinding attacks [8, 9]. In these attacks, it is assumed that

the victim visits the attacker’s web site (e.g., attacker.com) that loads a malicious Java

applet. The attacker’s DNS server is programmed to respond to the browser’s initial DNS

query (for attacker.com) with the IP addresses of the attacker’s server, which serves

the attacker’s malicious Java applet. Subsequently, the attacker’s Java applet running

on the client’s machine is instructed to open a socket to attacker.com. Since the DNS

response for attacker.com has expired (due to a short time-to-live), the Java virtual

machine resolves the host name again, but this time the attacker’s DNS server indicates

that attacker.com points to the target server. As a result, the applet (which is under

the attacker’s control) opens a socket connection to the target server from the client’s

IP address. DNS rebinding attacks have been known for a long time and are addressed

by basing access control decisions on the IP address rather than the host name, either

directly by checking against the IP address (as in Java) or by pinning, forcing a constant

mapping between DNS name and IP address regardless of the time-to-live of the DNS

1These restrictions do not apply to signed applets which the user has accepted. Those applets have
the user’s full privileges.
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response.

1.2.2 Verified-Origin Policy

Unfortunately, the same-origin policy, strictly construed, is quite limiting: many web ap-

plication developers wish to communicate with other web sites, for example to incorporate

additional functionality or content (including advertisements). Allowing such communi-

cation is unsafe in the general case, but the browser can safely allow communication as

long as it verifies that the target site consents to the communication traffic. There are a

number of Web technologies that implement this verified-origin policy [10].

Flash Cross-Domain Policies

Prior to letting Adobe Flash multimedia files, known as Small Web Format (SWF) files,

open a socket connections to a server, Flash Player first connects to the site and fetches

a cross-domain policy file: an XML blob that specifies the origins that are allowed to

connect to that site [11].2 The location of the policy file is itself subject to a number of

restrictions, which make it more difficult for an attacker who has limited access to the

target machine to generate a valid file. For instance, policy files hosted on port 1024 or

higher cannot authorize access to ports below 1024.

Flash Player uses the same general mechanism to control access both to raw sockets

and to cross-domain HTTP requests. As with Java, Flash Player’s consent mechanism

was vulnerable to DNS rebinding attacks in the past [8]. Indeed, the mechanism described

above where the cross-domain policy file is always checked is a response to some of these

rebinding attacks which exploited a time-of-check-time-of-use (TOCTOU) issue between

the browser’s name resolution and that performed by Flash Player.

2This description is a simplification of Flash Player’s security policy [12].
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JavaScript Cross-Origin Communication

Until recently, network access for JavaScript applications was limited to making HTTP

requests via XMLHttpRequest. Browsers heavily restrict these requests and forbid re-

questing cross-origin URLs [13]. Recently, browser vendors have added two mechanisms

to allow web applications to escape (hopefully safely) from these restrictions.

• Cross-Origin Resource Sharing. Cross-Origin Resource Sharing (CORS) [14]

allows web applications to issue HTTP requests to sites outside their origin. When

a web application issues a cross-origin XMLHttpRequest, the browser includes the

application’s origin in the request in the Origin header. The server can authorize the

application to read back the response by echoing the contents of the Origin request

header in the Access-Control-Allow-Origin response header. This consent-base

relaxation of the same-origin policy makes it easier for different web applications to

communicate in the browser.

• WebSocket. Although CORS is targeted only at HTTP requests, the WebSocket

protocol [15] lets web applications open a socket connection to any server (whether

or not the server is in the application’s own origin) and send arbitrary data. This

feature is extremely useful, especially as an optimization for scenarios in which the

server wishes to asynchronously send data to the client. Currently, such applications

use a rather clumsy set of mechanisms generally known as Comet [16]. Like Flash

Player and CORS, WebSocket uses a verified-origin mechanism to let the target

server consent to the connection. Unlike Flash Player and CORS, the verification

is performed over the same socket connection as will be used for the data (using a

cryptographic handshake where the server replies to a client-provided nonce). This

handshake is initiated by the browser and only after the handshake has completed
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does the browser allow the application to send data over the raw socket.

1.3 Why are Network Intermediaries Dangerous?

In this section, we articulate how network intermediaries can cause harm to the security

of web applications and browsers. Existing literature [17] describes how mis-implemented

proxies, or proxy servers, may fail to interoperate with the rest of the Web and cause

unexpected errors in web applications (due to improperly handling HTTP headers).

We further study the security impact of bad network intermediaries. We consider

two separate scenarios: (1) a benign but confused network intermediary controlled by

an honest operator, and (2) a malicious network intermediary controlled by a dishonest

operator. Although the dangers of a malicious network intermediary are rather evident,

the less obvious argument is that even a benign network intermediary could also severely

degrade security. First, we describe how transparent proxies may be vulnerable to web

attacks. Second, we determine whether TLS connections are being intercepted on a large

global website.

1. Transparent Proxy Vulnerabilities. Java, Flash Player, and HTML5 provide

socket APIs to web sites, but we discovered, and experimentally verified, web attacks

that exploit the interaction between these APIs and transparent proxies. At a cost

of less than $1 per exploitation, a web attacker can remotely poison the proxy’s

cache, causing all clients of the proxy to receive malicious content.

2. Unauthorized Interceptions. In a TLS man-in-the-middle attack, the network

attacker uses forged TLS certificates to intercept encrypted connections between

clients and servers. We designed and implemented a method to detect the occurrence

of TLS man-in-the-middle attack on a top global website, Facebook.
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1.3.1 Transparent Proxy Vulnerabilities

Unlike traditional HTTP proxies, which are explicitly configured and known to the client,

transparent proxies insert themselves into the transport path (e.g., by acting as the net-

work’s default gateway or as a bridge) and then act as proxies without the client’s knowl-

edge. Such proxies are common in traffic filtering applications but also can serve as

network accelerators or proxy caches.

Unfortunately, these transparent proxies often forward the server’s consent without

understanding its semantics. When a server provides a Flash policy file authorizing a

SWF to connect to the server’s IP address on port 80, Flash Player will allow the SWF

to open a raw socket connection to the server, not aware that the SWF is actually talking

to a transparent proxy instead of the server itself. Once the attacker has opened a socket

to the proxy server, the type of harm that the attacker can perform depends on details of

how the proxy behaves. For example, Auger [3] describes how an attacker can leverage

transparent proxies to establish connections with any host accessible by the proxy.

We present new attacks that can poison the proxy’s cache for an arbitrary URL,

causing users of the proxy to receive the attacker’s malicious content instead of the honest

server’s content. Such attacks are critical, since every successful cache poisoning attack

would also affect all users of the vulnerable proxy (potentially the entire enterprise). In

response to our discovery of transparent proxies vulnerabilities, the WebSocket protocol

adopted our proposal to obfuscate application payloads.

1.3.2 Unauthorized Interceptions

TLS man-in-the-middle attack attempts have previously been reported in the wild (i.e.

in Iran [18] and Syria [19]). However, it is unclear how prevalent these attacks actually

are. We introduce a novel method for websites to detect man-in-the-middle attacks on
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a large scale, without alterations on the client’s end (e.g., customized browser). We

utilized the widely-supported Flash Player plugin to enable socket functionalities not

natively present in current browsers, and implemented a partial TLS handshake on our

own to capture forged certificates. We deployed this detection mechanism on an Alexa

top 10 website, Facebook, which terminates connections through a diverse set of network

operators across the world. Based on real-world data, we categorized the most common

causes of TLS interceptions. We showed that most of the TLS interceptions are due to

antivirus software and organization-scale content filters. We provided evidence of SSL

interceptions by malware, which have infected users across at least 45 countries.

1.4 Why isn’t TLS More Widely Deployed?

In this section, we provide background on the Transport Layer Security (TLS) protocol,

which is designed to protect against network attackers (described in Section 1.1.2). We

then discuss the most common reasons of why TLS is not more widely deployed.

1.4.1 Background

Transport Layer Security (TLS) [5] provides authentication based on the X.509 public key

infrastructure [20], protects data confidentiality using symmetric encryption, and ensures

data integrity with cryptographic message digests.3 To establish a secure connection, the

client and server perform a TLS handshake in which each party can authenticate itself by

providing a certificate signed by a trusted certificate authority (CA). Using a cipher suite

negotiated in the handshake, the client and server agree on a key to secure the application

data that is sent after the handshake.

3TLS is the successor of Secure Sockets Layer (SSL) [21].
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Cipher Suites

The TLS protocol supports an extensible set of cipher suites, where each cipher suite

defines a combination of authentication, key exchange, bulk encryption, and message

authentication code (MAC) algorithms to be used.

• Authentication algorithms allow communicating parties to verify the identities of

each other based on public key cryptography, e.g., RSA, DSA, and ECDSA.

• Key exchange schemes allow peers to securely agree upon on a session key used

for the bulk encryption of subsequent payloads, e.g., RSA, ephemeral Diffie-Hellman

(DHE), and ephemeral Elliptic Curve Diffie-Hellman (ECDHE).

• Bulk encryption ciphers are used to encrypt application data, e.g., AES and RC4.

• MAC algorithms are used to generate message digests, e.g., SHA-1 and SHA-256.

TLS Handshake

Figure 1.1 shows a full TLS handshake using RSA key exchange and no client certificate,

which is a common configuration on the web. The ClientHello and ServerHello establish an

agreement between the client and the server on which version of TLS and which cipher

suite to use. The ClientHello message specifies a list of client-supported cipher suites

and a client-generated random number (the pre-master secret). The ServerHello message

carries the server-chosen cipher suite and a server-generated random number. These

initial messages also allow the client and server to exchange fresh random values used

in deriving the session key, which prevents message replay. In addition, the Certificate

message contains the server’s public key certificate, digitally signed by a CA, in which the

client is responsible of verifying. The client then encrypts the pre-master secret using the
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Browser HTTPS server 

ClientHello 

ServerHello, Certificateserver, ServerHelloDone 

ClientKeyExchange, ChangeCipherSpec, Finished 

ChangeCipherSpec, Finished 

Figure 1.1: A standard TLS handshake, with RSA key exchange and no client certificate.

server’s public key and sends the pre-master secret to the server over a ClientKeyExchange

message. After the server has received the ClientKeyExchange message, both the client and

the server can derive the master key with which the application data is encrypted. The

ChangeCipherSpec messages indicate to the other party that subsequent messages will be

encrypted with the negotiated cipher suite. Finished messages contain a hash of the entire

handshake to ensure to both parties that handshake messages have not been altered by

a network attacker. After two round trips between the client and server, the client can

finally send application data over the encrypted connection.

Certificate Validation

In the X.509 [20] public key infrastructure, a certificate issued by a CA binds a public

key with an individual, commonly a domain name. Fundamentally, a valid certificate

must be signed by a trusted source. Web browsers and operating systems come with a

pre-installed list of trusted signers in their root CA store. More often, the root CAs will

not directly sign certificates due to security risks, but delegate authority to intermediate

CAs that actually sign the certificates. Therefore, the browser should verify that the leaf

certificate is bundled along with a certificate chain leading to a trusted signer.

To determine the validity period of a public key certificate, each certificate specifies
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the date it becomes valid, and the date it expires. It is current standard practice for

commercial CAs to issue certificates with a relatively long validity period such as a year or

longer. In addition, X.509 defines mechanisms for the issuing CA to revoke certificates that

haven’t expired but should no longer be trusted, e.g., when the private key corresponding

to the certificate has been compromised, or more often because the certificate was reissued.

The common certificate revocation checking mechanisms are Certificate Revocation Lists

(CRL) [20] and the Online Certificate Status Protocol (OCSP) [22].

• Certificate Revocation Lists. The basic idea of CRL is that, when a certificate

goes bad, its identifying serial number is published to a list, signed and timestamped

by a CA. In order to trust a certificate, the client must ensure that the certificate

is not listed in CRLs. CRLs are published by CAs at a URL indicated by the CRL

distribution point extension. We note that for CRLs to be effective, one assumes

that (1) up-to-date lists are published frequently by the CA, (2) the most recent list

is available to the verifier, and (3) verification failures are treated as fatal errors.

• Online Certificate Status Protocol. The Online Certificate Status Protocol

(OCSP), an alternative to CRLs proposed in RFC 2560 [22], allows client software to

obtain current information about a certificate’s validity on a certificate-by-certificate

basis. When verifying a certificate, a client sends an OCSP request to an OCSP

responder, which responds whether the certificate is valid or not. OCSP responders

themselves are updated by CAs as to the status of certificates they handle. Typically,

clients are instructed to cache the OCSP response for a few days [23].

1.4.2 Deployment Concerns

TLS provides encryption for web applications and significantly raises the difficulty of

network attacks (as well as erroneous handling by transparent network intermediaries).
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While the security benefits of TLS are clear, TLS is still not pervasively deployed across

websites. To understand why TLS is not more widely deployed, we point out some of the

common arguments against deploying TLS.

• Computational Costs. Enabling TLS introduces additional computational costs

(e.g., CPU, memory, etc.) on servers and clients, including asymmmetric encryption

for authentication and symmetric cryptography to encrypt all TLS records. Due to

encryption, TLS may also induce some additional network bandwidth usage due to

the encryption overhead. Fortunately, significant improvements in modern CPUs

have reduced the impact of these costs on servers [24], and may eventually reduce

the need for dedicated “SSL accelerator” hardware [25]. Furthermore, session re-

sumption support (with TLS Session ID or TLS Session Tickets) on servers also

reduces the computational costs.

• Handshake Latency. The standard TLS handshake requires two round trips be-

fore a client or server can send application data. A key bottleneck in a full TLS

handshake is the need to fetch and validate the server certificate before establish-

ing a secure connection. The web browser must validate the server’s certificate

using certificate revocation protocols such as the Online Certificate Status Protocol

(OCSP) [22], adding more latency and leading clients to cache certificate validation

results. The network latency imposed by the handshake impacts user experience

and discourages websites from enabling TLS. Moreover, existing studies [6] have

indicated that slower websites result in loss of users, reputation and revenue.

• Proxy Caching. Since all encrypted TLS communications should appear oblivious

to network intermediaries, web proxies cannot simply perform caching on encrypted

traffic. As a result, more requests from clients must be handled at the servers,
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which may also incur higher server load as well as larger client-perceived round

trip latencies. In response, many modern websites have employed content delivery

networks (CDNs) across the world to offload the server traffic and minimize client-

perceived round trip times.

• Browser Caching. A little-known but significant contributor to the cost of TLS

is the modified browser caching behavior under HTTPS. We give two examples.

– First, Internet Explorer will not use locally cached HTTPS content without

first establishing a valid TLS connection to the source web site [26]. While

web servers can use a Cache-Control header to tell the browser that certain

content is static and can be used directly from cache, Internet Explorer ignores

this header for HTTPS content and insists on an HTTPS handshake with the

server before using the cached content (in IE9 this session is used to send an

unnecessary If-Modified-Since query). This behavior is especially damaging

for sites who use a content distribution network (CDN) since IE will insist on

an HTTPS handshake with the CDN before using the cached content. These

redundant handshakes, which include a certificate validation check, discourage

web sites from using HTTPS.

– Second, some browsers, such as Firefox, are reluctant to cache HTTPS content

unless explicitly told to do so using a Cache-Control: public header [27].

Websites that simply turn on TLS without also specifying this header see vastly

more HTTPS requests for static content. This issue has been fixed in Firefox 4.

• Operational Costs. Although popular web servers all provide support for TLS,

properly configuring and maintaining a TLS server can be a burden for the deploy-

ers [28]. First of all, acquiring valid certificates from commercial CAs may incur a
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cost. Moreover, properly installing the certificates and rotating the keys securely

can be a challenging task. Furthermore, correctly configuring a TLS server (e.g.,

cipher suites, Diffie-Hellman key sizes, etc.) requires a cetain amount of knowledge,

which can be (surprisingly) difficult.

• Breakage. There may be a small portion of legacy browsers or clients that do not

support the latest TLS protocols, and may encounter errors when connecting to

secure websites. For example, the Server Name Indication (SNI) extension for TLS

enables multiple TLS servers to be hosted on the same IP address using distinct

certificates, but is still not supported on certain mobile or legacy platforms. Sim-

ilarly, certain transparent network intermediaries may fail to forward TLS traffic

correctly, and might break the user experience of secure websites. These interoper-

ability issues may discourage websites to deploy TLS at the risk of site breakage.

Lastly, network intermediaries are often deployed in enterprise networks for auditing

or security purposes. However, enabling TLS essentially breaks traffic monitoring

tools, and would require additional work to install custom root certificates on the

client’s system.

1.5 Opportunities for Improving TLS Performance

As discussed in Section 1.4.2, one of the most common arguments against deploying TLS

falls in the category of performance-related concerns. To encourage wider use of encryp-

tion, we identify three opportunities to improve TLS performance, without sacrificing

security.

1. Prefetching and Prevalidating Certificates. A key bottleneck in a full TLS

handshake is the need to fetch and validate the server certificate before establishing
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a secure connection.

2. Short-Lived Certificates. OCSP imposes a massive performance penalty on TLS

yet failed to mitigate multiple high-profile CA breaches [29, 30].

3. Forward Secrecy Performance. Contrary to traditional performance arguments,

forward secrecy (using elliptic curve cryptography) is not much slower, and can even

be faster, than RSA-based setups with no forward secrecy.

1.5.1 Prefetching and Prevalidating Certificates

We propose that the client-perceived TLS connection time can be reduced in two ways:

(1) eliminate the certificate validation time by enabling prefetching and prevalidation of

server certificates, and even (2) eliminate two round trips by enabling the abbreviated

TLS handshake. This requires the client to obtain the server certificate and parameters

beforehand, when it is likely that the user might navigate to the website. The browser

can use the same triggers that it uses to pre-resolve hostnames [31] to determine when

certificate prefetching is useful: for example, when the user is typing in the address bar

or when the user’s mouse cursor hovers over a HTTPS link.

A näıve prefetching method is to open a dummy TLS connection to the server. These

dummy connections pre-warm the client’s connection cache basically performing a stan-

dard TLS handshake with the server, and would eventually disconnect on timeout. We

discuss four more options for certificate prefetching that induce less server load:

• Prefetching with a truncated handshake. The browser can prefetch the cer-

tificate by initiating a TLS connection, but truncate the handshake (via the TLS

Alert protocol) before the computationally expensive steps are performed.
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• Prefetching via HTTP GET. The browser can prefetch the certificate informa-

tion as a special file from a standardized location on the HTTP server.

• Prefetching from a CDN. To avoid placing any extra load on the server, a client

can attempt to prefetch certificate information (as a file) from a CDN.

• Prefetching from DNS. Alternatively, the server may place its certificate infor-

mation in a DNS record to offload the prefetching traffic.

1.5.2 Short-Lived Certificates

We propose to abandon the existing revocation mechanisms in favor of an old idea —

short-lived certificates. A short-lived certificate is identical to a regular certificate, except

that the validity period configured with a short span of time. For instance, CAs could

configure the validity period of short-lived certificates to match the average validity life-

time of an OCSP response that we measured in real-world, which was 4 days [23]. Such

certificates expire shortly, and most importantly, fail-closed (treating them as insecure)

after expiration on clients without the need for a revocation mechanism. In our proposal,

when a web site purchases a year-long certificate, the CA’s response is a URL that can

be used to download on-demand short-lived certificates. The URL remains active for the

year, but issues certificates that are valid for only a few days.

We argue that short-lived certificates are far more efficient than CRLs and OCSP (since

online revocation checks are eliminated), and require no client-side changes. Moreover,

since clients typically fail closed when faced with an expired certificate, this approach

is far more robust that the existing best-effort OCSP and CRL based approaches. We

further note that browser-maintained global CRLs complements nicely with short-lived

certificates. Browser vendors will be able to revoke fraudulent certificates and rogue CAs,
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while CAs may control administrative revocations for benign certificates.

1.5.3 Forward Secrecy Performance

Forward secrecy guarantees that eavesdroppers simply cannot reveal secret data of past

communications. Given current parameter and algorithm choices, we show that the tra-

ditional performance argument against forward secrecy is no longer true. We compared

the server throughput of various TLS setups supporting forward secrecy, and measured

real-world client-side latencies using an ad network. Our results indicate that forward se-

crecy is no harder, and can even be faster using elliptic curve cryptography (ECC), than

no forward secrecy. We suggest that sites should migrate to ECC-based forward secrecy

for both security and performance reasons.

1.6 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we explain trans-

parent proxy vulnerabilities, including existing and new attacks, and describe how the

WebSocket protocol adopted our defense proposal to prevent these attacks. In Chapter 3,

we describe how we detected unauthorized TLS man-in-the-middle attacks on a large

global website, and investigate why the connections were being intercepted. Chapter 4

describes how prefetching and prevalidating TLS certificates can significantly reduce the

handshake latencies. Chapter 5 explains how using short-lived certificates can eliminate

the latencies of certificate revocation lookups. Chapter 6 surveys TLS forward secrecy

deployments and evaluates the performance of using elliptical curve cryptography over

traditional RSA-based setups. Finally, Chapter 7 concludes.



Chapter 2

Transparent Proxy Vulnerabilities

The work in this chapter was done in collaboration with Eric Chen, Adam Barth, Eric

Rescorla, and Collin Jackson.

In this chapter, we show that the consent protocols (described in Section 1.2) for

network access used by browsers today are vulnerable to attack in network configura-

tions involving network intermediaries, specifically transparent proxies. Unlike traditional

HTTP proxies, which are explicitly configured and known to the client, transparent prox-

ies insert themselves into the transport path (e.g., by acting as the network’s default

gateway or as a bridge) and then act as proxies without the client’s knowledge. Such

proxies are common in traffic filtering applications but also can serve as network acceler-

ators or proxy caches. Although colloquially referred to as “transparent” proxies, these

proxies are more accurately termed “intercepting” proxies because, as we show, they are

not quite as transparent as their deployers might wish.

2.1 Attacks on Java and Flash Sockets

Consider the situation in which the user is behind a transparent proxy and visits attacker.com.

The attacker embeds a malicious SWF served from attacker.com, and the browser uses

22
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Figure 2.1: Auger’s Flash-based IP hijacking attack on a benign transparent proxy

Flash Player to run the SWF. The attacker can now mount a number of different attacks,

depending on how the proxy behaves.

When using a traditional proxy, the browser connects directly to the proxy and sends

an HTTP request, which indicates to the proxy which resource the browser wishes to

retrieve. When a transparent proxy intercepts an HTTP request made by a browser, the

proxy has two options for how to route the request:

• The HTTP Host header.

• The IP address to which the browser originally sent the request.

2.1.1 Auger’s IP Hijacking Attack

Unfortunately, as described by Auger [3], if the proxy routes the request based on the Host

header, an attacker can trick the proxy into routing the request to any host accessible to

the proxy, as depicted in Figure 2.1:

1. The attacker hosts a permissive Flash socket policy server on attacker.com:843

that allows access to every port from every origin.
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2. The attacker’s SWF requests to open a raw socket connection to attacker.com:80

(which has IP address 2.2.2.2).

3. Flash Player connects to attacker.com:843 and retrieves the attacker’s socket pol-

icy file, which indicates that the server has opted into the socket connection.

4. Flash Player lets the attacker’s SWF open a new socket connection to attacker.com:80.

5. The attacker’s SWF sends a sequence of bytes over the socket crafted with a fake

Host header as follows:

GET / HTTP/1.1

Host: target.com

6. The transparent proxy treats these bytes as an HTTP request and routes the request

according to the Host header (and not on the original destination IP address).

Notice that the request is routed to target.com:80 (which has an IP address of

1.1.1.1).

7. The target server responds with the document for the URL http://target.com/,

requested from the client’s IP address, and the transparent proxy forwards the

response to the attacker’s SWF.

Notice that Flash Player authorized the attacker’s SWF to open a socket to the at-

tacker’s server based on a policy file it retrieved from the attacker’s server. However,

the transparent proxy routed the request to a different server because the socket API

let the attacker break the browser’s security invariant that the Host header matched the

destination IP address, leading to the vulnerability. Alternatively, the attacker can try to

trick the proxy into tunneling a raw socket connection to the target server by using the

HTTP CONNECT method [32] in Step 5:
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Figure 2.2: Our Java-based cache poisoning attack on a benign transparent proxy

CONNECT target.com:80 HTTP/1.1

Host: target.com:80

By leveraging the user’s machine to connect to other hosts in the Internet over these

proxies, the attacker may hijack a user’s IP address to perform misdeeds and frame the

user. For example, the attacker may generate fake clicks on pay-per-click web advertise-

ments to increase their advertising revenue [33], using different client IP addresses. IP

hijacking attacks may also allow web attackers to access protected web sites that authen-

ticate by IP address, or send spam email from the victim user’s IP address.

An attacker can also exploit Java sockets in the same way. The attack steps are

identical, except that the attacker need not host a policy file because Java implicitly

grants applets the authority to open socket connections back to its origin server without

requiring the server to consent.

2.1.2 Our Cache Poisoning Attack

In the attacks described in the previous section, we considered transparent proxies that

route HTTP requests according to the Host header. However, not all proxies are con-

figured that way. Some proxies route the request to the original destination IP address,
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regardless of the Host header. Although these proxies are immune to IP hijacking attacks,

we find that the attacker can still leverage some of these proxies to mount other attacks.

In particular, some transparent proxies that route by IP are also caching proxies. As

with routing, proxies can cache responses either according to the Host header or according

to the destination IP address. If a proxy routes by IP but caches according to the Host

header, we discover that the attacker can instruct the proxy to cache a malicious response

for an arbitrary URL of the attacker’s choice, as shown in Figure 2.2:

1. The attacker’s Java applet opens a raw socket connection to attacker.com:80

(as before, the attacker can also a SWF to mount a similar attack by hosting an

appropriate policy file to authorize this request).

2. The attacker’s Java applet sends a sequence of bytes over the socket crafted with a

forged Host header as follows:

GET /script.js HTTP/1.1

Host: target.com

3. The transparent proxy treats the sequence of bytes as an HTTP request and routes

the request based on the original destination IP, that is to the attacker’s server.

4. The attacker’s server replies with malicious script file with an HTTP Expires header

far in the future (to instruct the proxy to cache the response for as long as possible).

5. Because the proxy caches based on the Host header, the proxy stores the mali-

cious script file in its cache as from http://target.com/script.js, instead of the

original URL http://attacker.com/script.js.

6. In the future, whenever any client requests http://target.com/script.js via the

proxy, the proxy will serve the cached copy of the malicious script.
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One particularly problematic variant of this attack is for the attacker to poison the

cache entry for Google Analytics’ JavaScript library. Every user of the proxy (possibly

the entire enterprise) will now load the attacker’s malicious JavaScript into every page

that uses Google Analytics, which is approximately 57% of the top 10, 000 web sites [34].

Because the Google Analytics JavaScript runs with the privileges of the embedding web

site, the attacker is able to effectively mount a persistent cross-site scripting attack against

the majority of the Internet, as viewed by users of the proxy.

2.1.3 Ad-based Experiment

The attacks described above have very specific network configuration requirements. To

determine how commonplace these network configurations are on the Internet, we de-

veloped proof-of-concept exploits for both the IP hijacking and cache poisoning attacks

using both Flash Player and Java. We then ran an advertisement on a public advertising

network that mounted the attacks against servers in our laboratory.

Methodology

Our experiment consisted of two machines in our laboratory, with different host names and

IP addresses. One machine played the role of the target server and the other played the

role of the attacking server. The target was a standard Apache web server. The attacking

server ran a standard Apache web server and a Flash socket policy server on port 843.

We used a rich media banner advertisement campaign on an advertising network to serve

our experimental code to users across the world. Our advertisement required no user

interaction, and was designed to perform the following tasks in the user’s web browser:

• IP Hijacking. Our advertisement opens a raw socket connection back to the

attacking server using both Java and Flash Player. The attacking server runs a



CHAPTER 2. TRANSPARENT PROXY VULNERABILITIES 28

custom Flash socket policy server on port 843 that allows Flash socket connections

to port 80 from any origin. Upon a successful connection, the advertisement spoofs

an HTTP request over the socket by sending the following request:

GET /script.php/<random> HTTP/1.1

Host: target.com

The attacking server and the target server each host a PHP file at /script.php,

but because these files are different we can easily determine which server the request

went to. The random value on the end of the URL serves to bypass caches used

by plug-ins, browsers, or proxies. Alternatively, we could have included the random

value in the query string (i.e., after a ? character) but some caching proxies treat

URLs containing query strings inconsistently. If the HTTP response was from the

target server instead of from the attacking server, that is direct evidence that the

request was routed by the Host header, which implies that the user is vulnerable to

IP hijacking.

• Cache Poisoning. In the previous test, the script files were served with the HTTP

response headers Cache-Control: public, Last-Modified and Expires that al-

lowed them to be cached for one year. To check whether the socket connection has

poisoned the proxy’s cache, we added a script tag to our advertisement that attempts

to load a script from the target server at http://target.com/script.php/<random>,

reusing the random value from the previous request. Because the random value was

only used previously via the socket API, this URL will not be present in the browser’s

HTTP cache (as the browser does not observe the bytes sent over the socket). By

checking the contents of the response (specifically, a JavaScript variable), we can

determine whether the script was from the attacker or the target server. If we re-
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Flash Player Java

Spoof request routed to target? 3152 2109
Spoof request routed to attacker 47839 26759
Script file cached from target 51163 26612
Script file cached from attacker† 108 53

Table 2.1: HTTP Host header spoofing via plug-in sockets
? Allows attacker to open a direct socket from the client to an arbitrary server
† Allows attacker to poison the HTTP cache of all clients of the proxy

ceive the version of the script hosted on the attack server, we can deduce that a

transparent proxy has cached the response.

Results

We ran our advertisement on five successive days in March 2011, spending $100 in total.

We garnered a total of 174,250 unique impressions. We discarded repeat visits by the same

users by setting a cookie in the user’s browser. The advertisement ran our JavaScript,

SWF, and Java bytecode without user intervention and sent results back to server in our

laboratory after completing the experiment. If the user closed the browser window or

navigated away before the experiment finished running, we did not receive the results

from that part of the experiment. We collected 51,273 results from SWFs and 30,045

results from Java applets (19,117 of the impressions produced results from both tests).

The most likely reason for the low response rate is that the loading time of our SWF and

Java applet was noticeably slow, and users did not stay on the page long enough for the

experiment to run. Our experimental results show that both IP hijacking attacks and

cache poisoning exist in real world scenarios, as shown in Table 2.1.

• IP Hijacking. In the IP hijacking test using Flash sockets, we observed that

the spoofed request was routed back to the attacking server on 47,839 of 51,273

impressions (93.3%), suggesting that the client made a direct connection or the
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network intermediaries routed regardless of the Host header. We logged 233 of

51,273 impressions (0.4%) where the Flash socket failed to open, possibly due to

firewalls that blocked port 843, preventing Flash Player from fetching the socket

policy file. There were 49 cases where the client received an HTML error message,

possibly generated by a transparent proxy that blocked the spoofed request. On

3,152 impressions (6.1%) the spoofed request was routed by the Host header to the

target server, indicating vulnerability to IP hijacking.

Using Java sockets, we observed that 26,759 of 30,045 impressions (89.1%) received

the response from the attacker’s server, implying that they were routing on IP. Out

of 30,045 impressions, there were 1,134 (3.8%) connection errors that threw Java

exceptions and 43 that received an HTML error message. We found that 2,109 of

30,045 impressions (7%) routed on the Host header, allowing IP hijacking attacks.

• Cache Poisoning. In the cache poisoning test using Flash sockets, we observed

that 51,163 of 51,273 impressions (99.8%) were able to fetch the script from the tar-

get. There were 2 cases where the client reported an error response. However, we

discovered that the cache poisoning attack was successful on 108 of 51,273 impres-

sions (0.21%). This suggests that some transparent proxies route HTTP requests

by IP but cache according to the Host header.

In our cache poisoning test using Java sockets, we observed 26,612 of 30,045 impres-

sions (88.6%) retrieved the response from the target server. We observed that 3,680

of 30,045 impressions (12.2%) caused exceptions when using Java to interrogate the

results of the second query, which we were unable to determine whether the cache

poisoning succeeded or not. Similarly to the results using Flash sockets, there were

53 of 30,045 impressions (0.18%) that reported a successful cache poisoning attack.
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Our results show that the attacker may achieve a cost efficiency of 1.08 successful

cache poisoning attacks per dollar spent, using Flash sockets on advertising net-

works. Note that each successful cache poisoning attack would in effect compromise

other users of the vulnerable proxy, beyond our measurement.

2.2 Attacks on WebSocket Protocols

One diagnosis of the cause of the Java and Flash socket vulnerabilities is that both use

an out-of-band mechanism to authorize socket connections. Because intermediaries are

oblivious to these out-of-band signals, they misinterpret the information sent over the

socket by the attacker.

In this section, we consider three in-band signaling mechanisms for authorizing socket

connections, all based on HTTP. The first is a POST-based handshake of our own invention

to illustrate some of the design issues. The second is the state-of-the-art Upgrade-based

handshake used by HTML5. The third is an experimental CONNECT-based handshake that

was designed in attempt to prevent attacks. We then evaluate the security of these three

strawman handshakes for the WebSocket protocol.1

2.2.1 POST-based Strawman Handshake

Design One natural approach to designing an in-band signaling mechanism is to model

the handshake after HTTP. The idea here is that until we have established the server’s

consent to receive WebSocket traffic, we will not send any data that the attacker could

not already have generated with existing browser functionality—with the HTML form

element being the most powerful piece of syntax in this respect—so what could possibly

go wrong? This should protect servers which do not want to speak the WebSocket protocol

1At the time of our initial study, the HTML5 WebSocket protocol was not standardized, therefore, we
considered three strawmen proposals.
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from being sent WebSocket data. With this goal in mind, consider the following strawman

handshake based on an HTTP POST request:

Client → Server:

POST /path/of/attackers/choice HTTP/1.1

Host: host-of-attackers-choice.com

Sec-WebSocket-Key: <connection-key>

Server → Client:

HTTP/1.1 200 OK

Sec-WebSocket-Accept: <connection-key>

By echoing the connection key to the client, the server consents that it accepts the Web-

Socket protocol. If WebSockets are less generative than the form element, then we might

believe that adding WebSocket support to browsers does not increase the attack surface.

Vulnerabilities Unfortunately, using this handshake, WebSockets are not less genera-

tive than the HTML form element. For example, WebSocket applications can generate

data that appear as framing escapes and confuse network intermediaries into handling

subsequent data as new HTTP connections, instead of a continuous single HTTP connec-

tion expressed by the form element. Although we have accomplished our initial goal of

not sending any non-HTTP data to WebSocket servers, we can still confuse transparent

proxies.

Consider an intermediary examining packets exchanged between the browser and the

attacker’s server. As above, the client requests a WebSocket connection and the server

agrees. At this point, the client can send any traffic it wants on the channel. Unfor-

tunately, the intermediary does not know about the WebSocket protocol, so the initial

WebSocket handshake just looks like a standard HTTP request/response pair, with the

request being terminated, as usual, by an empty line. Thus, the client program can inject
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new data which looks like an HTTP request and the proxy may treat it as such. So, for

instance, he might inject the following sequence of bytes:

GET /sensitive-document HTTP/1.1

Host: target.com

When the intermediary examines these bytes, it might conclude that these bytes represent

a second HTTP request over the same socket. If the intermediary is a transparent proxy,

the intermediary might route the request or cache the response according to the forged

Host header, discussed in Section 2.1.

2.2.2 Upgrade-based Strawman Handshake

Design In an attempt to improve the security of its socket handshake, HTML5 uses

HTTP’s Upgrade mechanism to upgrade from the HTTP protocol to the WebSocket

protocol. HTTP’s Upgrade mechanism is a generic mechanism for negotiating protocols

using HTTP which was originally designed for layering TLS over HTTP. HTTP’s Upgrade

mechanism has two pieces: a Connection header whose value is the string “Upgrade” and

an Upgrade header whose value is the name of the protocol to which the client wishes to

switch. Below is a simplified version of the HTML5 WebSocket handshake using HTTP’s

Upgrade mechanism.

Client → Server:
GET /path/of/attackers/choice HTTP/1.1

Host: host-of-attackers-choice.com

Connection: Upgrade

Sec-WebSocket-Key: <connection-key>

Upgrade: WebSocket

Server → Client:
HTTP/1.1 101 Switching Protocols

Connection: Upgrade

Upgrade: WebSocket

Sec-WebSocket-Accept: HMAC(<connection-key>, "...")
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Vulnerabilities Unfortunately, HTTP’s Upgrade mechanism is virtually unused in

practice. Instead of layering TLS over HTTP using Upgrade, nearly every deployment

of HTTP over TLS uses a separate port, typically port 443 (the generic name for this

mode is HTTPS [35]). Consequently, many organizations are likely to deploy network in-

termediaries that fail to implement the Upgrade mechanism because these intermediaries

will largely function correctly on the Internet today. Implementers and users of these

intermediaries have little incentive to implement Upgrade, and might, in fact, be unaware

that they do not implement the mechanism.

To an intermediary that does not understand HTTP’s Upgrade mechanism, the HTML5

WebSocket handshake appears quite similar to our strawman POST-based handshake.

These intermediaries are likely to process the connection the same way for both the POST-

based handshake and the Upgrade-based handshake. If such an intermediary is vulnerable

to the attacks on the POST-based handshake, the intermediary is likely to be vulnerable

to the same attacks when using the Upgrade-based handshake.

2.2.3 CONNECT-based Strawman Handshake

Design Rather than relying upon the rarely used HTTP Upgrade mechanism to inform

network intermediaries that the remainder of the socket is not HTTP, we consider using

HTTP’s CONNECT mechanism. Because CONNECT is commonly used to establish opaque

tunnels to pass TLS traffic through HTTP proxies, transparent proxies are likely to in-

terpret this request as an HTTPS CONNECT request, assume the remainder of the socket

is unintelligible, and simply route all traffic transparently based on the IP. We create a

strawman handshake based on the CONNECT mechanism.

Client → Server:

CONNECT websocket.invalid:443 HTTP/1.1

Host: websocket.invalid:443



CHAPTER 2. TRANSPARENT PROXY VULNERABILITIES 35

Sec-WebSocket-Key: <connection-key>

Sec-WebSocket-Metadata: <metadata>

Server → Client:

HTTP/1.1 200 OK

Sec-WebSocket-Accept: <hmac>

where <connection-key> is a 128-bit random number encoded in base64 and <metadata>

is various metadata about the connection (such as the URL to which the client wishes

to open a WebSocket connection). In the server’s response, <hmac> is the HMAC of

the globally unique identifier 258EAFA5-E914-47DA-95CA-C5AB0DC85B11 under the key

<connection-key> (encoded in base64). By sending the <hmac> value, the server demon-

strates to the client that it understands and is willing to speak the WebSocket protocol

because computing the <hmac> value require “knowledge” of an identifier that is globally

unique to the WebSocket protocol.

Notice that instead of using the destination server’s host name, we use an invalid host

name (per RFC 2606 [36]). Any intermediaries that do not recognize the WebSocket

protocol but understand this message according to its HTTP semantics will route the

request to a non-existent host and fail the request.

2.2.4 Ad-based Experiment

To evaluate the practicality of mounting IP hijacking and cache poisoning attacks with

the WebSocket handshakes, we implemented prototypes for each WebSocket handshake

using Flash sockets and a WebSocket server written in Python. We reused the system

from the Java and Flash socket experiment with the following changes. We setup a custom

multiplexing server at port 80 on the attacking server, which forwards requests to either

a standard Apache server or the WebSocket server depending on the request headers. We
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POST-based Upgrade-based CONNECT-based

Handshake pass and spoof request ignored 47741 47162 47204
Spoof request routed to target? 1376 1 0
Spoof request routed to attacker 97 174 2
Script file cached from target 54519 54526 54534
Script file cached from attacker† 15 8 0

Table 2.2: HTTP Host header spoofing via HTML5 WebSocket strawman protocols
? Allows attacker to open a direct socket from the client to an arbitrary server
† Allows attacker to poison the HTTP cache of all clients of the proxy

ran an advertisement campaign for four successive days in November 2010, spending $20 in

the Philippines and $80 globally. Our advertisement contains a SWF which performs the

WebSocket handshake, spoofs an HTTP request upon handshake success, and instructs

the browser to request a script from the target server using a script tag. We experimented

with how intermediaries process each WebSocket handshake. Table 2.2 shows our results.

• POST-based handshake. Out of a total of 54,534 impressions, 49,218 (90.2%)

succeeded with the POST-based handshake and 5,316 (9.4%) failed. Out of the

49,218 impressions on which we were able to run our IP hijacking test, 47,741

(96.9%) reported that no intermediaries were confused when sending the spoofed

HTTP request. However, we found that the IP hijacking attack succeeded on 1,376

of 49,218 impressions (2.8%), where the client was behind a Host-routing proxy.

There were 97 of 49,218 impressions (0.2%) where the spoofed request was routed

by IP and 4 that received an HTML error. We ran the cache poisoning test on the

clients that succeeded with the POST-based handshake, and found 15 successful cache

poisoning attacks. These results show that the POST-based handshake is vulnerable

to both attacks.

• Upgrade-based handshake. We tested how intermediaries in the wild process

the Upgrade-based handshake. Out of a total of 54,534 impressions, 47,338 (86.8%)
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succeeded with the handshake and 7,196 (13.2%) failed. The handshake failed more

often than the POST-based handshake, possibly when the Upgrade mechanism was

unsupported and, perhaps, stripped. Out of the 47,338 impressions on which we

were able to run our IP hijacking test, 47,162 (99.6%) did not receive a response

after spoofing an HTTP request. We noticed that the IP hijacking attack succeeded

on 1 impression, where the client was behind a Host-routing proxy. There were

174 of 47,338 impressions (0.37%) where the spoofed request was routed by IP. One

impression received an HTML error message.

Out of the 47,338 impressions that succeeded the Upgrade-based handshake, we

ran the cache poisoning test and found 8 successful cache poisoning attacks. The

8 impressions were also vulnerable to cache poisoning when using the POST-based

handshake.

• CONNECT-based handshake. We tested whether the CONNECT-based hand-

shake would resist transparent proxy attacks in the real world. Out of a total of

54,534 impressions, 47,206 (86.6%) succeeded with the handshake and 7,328 (13.4%)

failed. Out of the 47,206 impressions on which we were able to run our IP hijacking

test, only three did receive a response after spoofing an HTTP request. We observed

that the IP hijacking attack did not succeed on any clients. We logged 1 impression

that returned an HTML error message. We observed 2 impressions where the spoof

request was routed by IP to the attacking server, however none indicated proxy

routing based on the Host header. It appears that these proxies simply passed the

CONNECT to our server untouched and then treated the next spoofed request as if it

were a separate request routed by IP. We proceeded to the cache poisoning test and

did not find successful cache poisoning attacks.
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2.3 Securing the WebSocket Protocol

In our experiments, we found successful attacks against both the POST-based handshake

and the Upgrade-based handshake. For the CONNECT-based handshake, we observed two

proxies which appear not to understand CONNECT but simply to treat the request as an

ordinary request and then separately route subsequent requests, with all routing based

on IP address. Although these proxies did not cache, it is possible that proxies of this

type which cache do exist—though our data suggest that they would be quite rare. In

this case the attacker would be able to mount a cache poisoning attack.

2.3.1 Our Proposal: Payload Masking

A mitigation for these attacks is to mask all the attacker-controlled bytes in the raw

socket data with a stream cipher. The stream cipher is not to provide confidentiality from

eavesdroppers but to ensure that the bytes on the wire appear to be chosen uniformly at

random to network entities that do not understand the WebSocket protocol, making it

difficult for the attacker to confuse the receiver into performing some undesirable action.

We propose masking the metadata in the initial handshake and all subsequent data

frames with a stream cipher, such as AES-128-CTR. To key the encryption, the client

uses HMAC of the globally unique identifier C1BA787A-0556-49F3-B6AE-32E5376F992B

with the key <connection-key>. However, encrypting the raw socket writes as one long

stream is insufficient because the attacker learns the encryption key in the handshake thus

can generate inputs to the socket write function that produce ciphertexts of his choice.

Instead, we encrypt each protocol frame separately, using a per-frame random nonce as

the top part of the CTR counter block, with the lower part being reserved for the block

counter. From the perspective of the attacker, this effectively randomizes the data sent

on the wire even if the attacker knows the key exchanged in the handshake. Note that
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each protocol frame must be encrypted with a fresh nonce and that the browser must

not send any bytes on the wire until the browser receives the entire data block from the

application. Otherwise, the attacker could learn the nonce and adjust the rest of the input

data based on that information.2 This mitigation comes at a modest performance cost

and some cost in packet expansion for the nonce, which needs to be large enough that the

attacker’s chance of guessing the nonce is sufficiently low.

In the case that the cost of encryption is a burden, Stachowiak [37] suggests using

a simple XOR cipher as a lightweight alternative to using AES-128-CTR. In particular,

the client generates a fresh 32 bit random nonce for every frame, and the plaintext is

XORed with a pad consisting of the nonce repeated. Because the nonce is unknown to

the attacker prior to receiving the corresponding data frame, the attacker is unable to

select individual bytes on the wire. However, because the pad repeats, the attacker is

able to select correlations between the bytes on the wire, but we are unaware of how to

leverage that ability in an attack.

Other proposals with simpler transformations have been discussed in the WebSocket

protocol working group, such as flipping the first bit in the frame, or escaping ASCII

characters and carriage returns in the handshake. However, these proposals do not pro-

tect servers or intermediaries with poor implementation that skip non-ASCII characters.

Moreover, using cryptographic masking also mitigates other attack vectors, such as non-

HTTP servers that speak protocols with non-ASCII bytes. We believe masking is a more

robust solution to these attacks that is more likely to withstand further security analysis.

2A similar condition applies to TLS [5] packet writes.
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Figure 2.3: Performance of WebSocket with 1,000-byte data frames

2.3.2 Performance Evaluation

We evaluated the network performance of WebSockets using no masking, XOR mask-

ing (with 32 bit nonces) and AES-128-CTR masking (with 32, 64 and 128 bit nonces),

modified on a Java implementation [38]. From slicehost.com, we acquired a 1,024 MB

RAM machine as the server with uncapped incoming bandwidth and eight 256 MB RAM

machines as the clients, each with 10 Mbps outgoing bandwidth. In our evaluation, we

measured the elapsed time for each client to send 10 MB of application data to the server

with various frame sizes, while the server handles up to 8 clients simultaneously. Results

for sending 1,000 byte data frames, 100 byte data frames and 10 byte data frames are

shown in Figure 2.3, Figure 2.4 and Figure 2.5, respectively. We observe that AES-128-

CTR masking induces little overhead when the data frame size is as large as 1,000 bytes.

However, the performance of AES-128-CTR masking drops off significantly for smaller

data frames in comparison with no masking, whereas XOR masking still performs at

acceptable speeds.
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Figure 2.4: Performance of WebSocket with 100-byte data frames
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Figure 2.5: Performance of WebSocket with 10-byte data frames
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2.3.3 Adoption

We reported the vulnerabilities to the IETF WebSocket protocol working group in Novem-

ber 2010. Due to concerns about these attacks, Firefox [39] and Opera [40] temporar-

ily disabled the WebSocket protocol. In response to our suggestion, the working group

reached consensus to prevent the attacker from controlling the bytes sent on the wire

by requiring XOR-based masking. Internet Explorer adopted frame masking in their

WebSocket prototype using Silverlight plug-in in HTML5 Labs [41]. In 2011, the IETF

standardized the WebSocket protocol including the proposed defense in RFC 6455 [42].

We hope to assist the Flash Player and Java plug-ins in addressing these issues in the

near future.

2.4 Related Work

2.4.1 Cross-Protocol Attacks

Cross-protocol attacks are used to confuse a server or an intermediary into associating a

request with an incorrect protocol. We described an instance of a cross-protocol attack

between HTTP and the WebSocket protocol. Topf [43] describes an attack that uses

HTML forms to send commands to servers running ASCII based protocols like SMTP,

NNTP, POP3, IMAP, and IRC. To prevent these attacks, browsers restrict access to well-

known ports of vulnerable applications, such as port 25 for SMTP. This defense cannot be

applied to WebSocket because WebSocket operates over port 80, the same port as HTTP,

for compatibility. We suspect there are other forms of cross-protocol attacks and expect

to address more of these problems in future work.
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2.4.2 HTTP Cache Poisoning

Bueno [44] describes an HTTP cache poisoning attack on web pages that rely on the value

of the HTTP Host header to generate HTML links. In particular, a malicious client sends

an HTTP request with a crafted Host header, causing the server to rewrite links with

an arbitrary string provided by the attacker. If there is any caching going on by proxies

along the way, other clients will get the exploited page with injected text. A mitigation for

these attacks is to not generate any page content using the Host header. In comparison,

our cache poisoning attacks do not rely on the usage of Host header in the target page,

and allow the attacker to poison the proxy’s cache for an arbitrary URL on any target

host.

2.4.3 HTTP Response Splitting

In an HTTP response splitting attack [45], the attacker sends a single HTTP request

that tricks the benign server into generating an HTTP response that is misinterpreted

by the browser or an intermediary as two HTTP responses. Typically, the malicious

request contains special line break character sequences, known as line feed (LF) and

carriage return (CR), that are reflected by the server into the output stream and appear

to terminate the first response, letting the attacker craft the byte sequence that the

browser or intermediary interprets as the second response. The attacker can mount a

cache poisoning attack by sending a second request to a benign server, which causes the

browser or proxy associates with the second “response” and stores in its cache. Servers can

prevent the attack by sanitizing data and not allowing CRLF in HTTP response headers.

In our work, we introduce new cache poisoning attacks against transparent proxies, which

are not addressed by previous mitigations.
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Unauthorized Interceptions

The work in this chapter was done in collaboration with Alex Rice, Erling Ellingsen, and

Collin Jackson.

In the previous Chapter, we studied web-based attacks that affect users behind benign,

but confused, network intermediaries. Next, we will investigate network attacks which

can happen when users are behind malicious network intermediaries.

An SSL man-in-the-middle attack is an interception of an encrypted connection be-

tween a client and a server where an active network attacker (described in Section 1.1.2)

impersonates the server through a forged SSL certificate. We define a forged SSL cer-

tificate as an SSL certificate not provided or authorized by the legitimate owner of the

website. In TLS, if the network attacker cannot obtain a valid certificate of legitimate

websites, browsers should fail to validate the server and trigger TLS certificate warnings.

That said, these attacks can still succeed against a significant portion of real-world users

who click-through the warnings [46, 47, 48, 49]. Furthermore, in the past, commercial

CAs (DigiNotar [30], Comodo [29], and TURKTRUST [50]) have been found to mis-issue

fraudulent certificates which would have been accepted by browsers.

Despite that SSL man-in-the-middle attack attempts have previously been spotted in

44
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the wild (e.g., in Iran [18], Syria [19] and even on Tor networks [51]), it is unclear how

prevalent these attacks actually are. Several existing SSL surveys [52, 53, 54, 55] have

collected large amounts of SSL certificates via scanning public websites or monitoring SSL

traffic on institutional networks, yet no significant data on forged SSL certificates have

been publicly available. We hypothesize that real attackers are more likely to perform

only highly targeted attacks at certain geographical locations, or on a small number of

high-value sessions, therefore, previous methodologies would not be able to detect these

attacks effectively.

In this Chapter, we first introduce a practical method for websites to detect SSL

man-in-the-middle attacks on a large scale, without alterations on the client’s end (e.g.,

customized browsers). We utilized the widely-supported Flash Player plugin to enable

socket functionalities not natively present in current browsers, and implemented a partial

SSL handshake on our own to capture forged certificates. We deployed this detection

mechanism on an Alexa top 10 website, Facebook, which terminates connections through

a diverse set of network operators across the world.

3.1 Man-in-the-Middle Attacks

In this section, we describe how the man-in-the-middle attack works, and provide several

reasons why detection is difficult.

3.1.1 How it Works

The SSL man-in-the-middle (MITM) attack is a form of active network interception where

the attacker inserts itself into the communication channel between the victim client and

the server (typically for the purpose of eavesdropping or manipulating private communi-

cations). The attacker establishes two separate SSL connections with the client and the
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Figure 3.1: An SSL man-in-the-middle attack between the browser and the server, using
a forged SSL certificate to impersonate as the server to the client.

server, and relays messages between them, in a way such that both the client and the

server are unaware of the middleman. This setup enables the attacker to record all mes-

sages on the wire, and even selectively modify the transmitted data. Figure 3.1 depicts an

SSL man-in-the-middle attack with a forged certificate mounted between a browser and

a HTTPS server. We describe the basic steps of a generic SSL man-in-the-middle attack

as follows:

1. The attacker first inserts itself into the transport path between the client and the

server, for example, by setting up a malicious WiFi hotspot. Even on otherwise

trusted networks, a local network attacker may often successfully re-route all of

the client’s traffic to itself using exploits like ARP poisoning, DNS spoofing, BGP

hijacking, etc. The attacker could also possibly configure itself as the client’s proxy

server by exploiting auto-configuration protocols (PAC/WPAD) [56]. At this point,

the attacker has gained control over the client’s traffic, and acts as a relay server
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between the client and the server.

2. When the attacker detects an SSL ClientHello message being sent from the client,

the attacker accurately determines that the client is initiating an SSL connection.

The attacker begins the impersonation of the victim server and establishes an SSL

connection with the client. Note that the attacker uses a forged SSL certificate

during its SSL handshake with the client.

3. In parallel to the previous step, the attacker creates a separate SSL connection to

the legitimate server, impersonating the client. Once both SSL connections are

established, the attacker relays all encrypted messages between them (decrypting

messages from the client, and then re-encrypting them before sending to the server).

Now, the attacker can read and even modify the encrypted messages between the

client and the server.

As soon as the client accepts the forged SSL certificate, the client’s secrets will be en-

crypted with the attacker’s public key, which can be decrypted by the attacker. Numerous

automated tools that can mount SSL man-in-the-middle attacks are publicly available on

the Internet (e.g., sslsniff [57]), which greatly reduce the level of technical sophistication

necessary to mount such attacks.

3.1.2 Why is Detection Challenging?

Unfortunately, detecting man-in-the-middle attacks from the website’s perspective, on a

large and diverse set of clients, is not a trivial task. First of all, most users do not use client

certificates, thus servers cannot simply rely on SSL client authentication to distinguish

legitimate clients from attackers. Furthermore, there are currently no APIs for a web

application to check the certificate validation status of the underlying SSL connection,
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not even when an SSL error has occurred on the client. Also, it is currently not possible

for web applications to directly access the SSL handshake with native browser networking

APIs, like XMLHttpRequest and WebSocket, to validate SSL certificates on their own.

Although one could easily develop a program or a custom browser extension that probes

SSL certificates as an SSL client, it would not be scalable to distribute additional software

to a large number of normal users, especially for non-tech-savvy users. Since professional

attackers are more likely to perform only highly targeted attacks at certain geographical

locations, or on a small number of high-value sessions, these methodologies would not be

able to detect localized attacks effectively.

3.2 Flash-Based Detection Method

In this section, we describe the design and implementation details of our detection method.

We further discuss our experimental results and limitations.

3.2.1 Design

In order to determine whether an SSL connection is being intercepted, our fundamental

approach is to observe the server’s certificate from the client’s perspective. Intuitively, if

the client actually received a server certificate that does not exactly match the website’s

legitimate certificate, we would have direct evidence that the client’s connection must

have been tampered with. Ideally, we would like to develop a JavaScript code snippet to

observe SSL certificates, which runs in existing browsers and can reach a large population

of clients. However, there are currently no existing browser APIs that allows web appli-

cations to directly check the observed server certificate or validation status of their SSL

connections. To work around this, we utilized browser plugins to implement a client-side

applet that is capable of imitating the browser’s SSL handshake, accompanied with the
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Figure 3.2: Detecting TLS man-in-the-middle attacks with a Flash applet.

ability to report the observed certificate chain. The applet can open a socket connection

to the HTTPS server (skipping the browser’s network stack), perform an SSL handshake

over the socket, record the SSL handshake, and report the certificate chain back to our

logging servers, shown in Figure 3.2. We describe our implementation details below.

Client-Side Applet

Our approach is to use a client-side applet that observes the server’s SSL certificate from

the client’s perspective, directly during the SSL handshake. Since native browser network-

ing APIs like XMLHttpRequest and WebSocket do not provide web applications access

to raw bytes of socket connections, we must utilize browser plugins. We implemented a

Shockwave Flash (SWF) applet that can open a raw socket connection to its own HTTPS
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server (typically on port 443), and perform an SSL handshake over the connection in the

Flash Player.

By default, the Flash Player plugin does not allow any applets to access socket con-

nections, unless the remote host runs a Flash socket policy server [11]. The Flash socket

policy server, normally running on port 843, serves a socket policy file that declares

whether SWF applications may open socket connections to the server. Note that even if

a SWF file is requesting a socket connection to the same host it was served from, a socket

policy server is still required. As a result, in order for a SWF applet from example.com

to open a socket connection to a HTTPS server example.com on port 443, a valid socket

policy file must be served at example.com on port 843, which permits socket access from

example.com applications to port 443, as follows (in XML format):

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy SYSTEM

"http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

<allow-access-from domain="example.com" to-ports="443" />

</cross-domain-policy>

Note that the socket policy file should not be confused with the crossdomain.xml

file served by web servers, which restricts access to HTTP, HTTPS, and FTP access, but

not socket access. If the Flash Player cannot successfully retrieve a valid socket policy

(e.g., blocked by a firewall), the socket connection will be aborted and an exception will

be thrown.

Once the socket connection is permitted, our applet will initiate an SSL handshake by

sending a ClientHello message over the socket, and wait for the server to respond with the

ServerHello and Certificate messages, which will be recorded. To support clients behind

explicit HTTP proxies, the applet may send a CONNECT request over the socket to

create an SSL tunnel prior to sending the ClientHello message, as follows:
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CONNECT example.com:443 HTTP/1.1

Our SSL handshake implementation was based on the SSL 3.0 protocol version. Since

our goal to observe the server’s certificate chain, our applet closes the socket connection

after successfully receiving the certificate chain. Lastly, our applet converts the raw bytes

of the recorded SSL handshake responses into an encoded string, and sends it back to our

log server with a POST request.

We note that the Flash Player plugin is currently supported on 95% of web browsers [58],

therefore, our applet should be able to run on most clients. In fact, one of the major

browsers, Google Chrome, has the Flash Player plugin built in by default. Also, SWF

applets are usually allowed to execute without any additional user confirmation, and do

not trigger any visual indicators (e.g., system tray icons) while running, thus, deploying

this method should not affect the visual appearance of the original web page.

Alternatively, the client-side applet may be implemented using other browser plugins,

for example, the Java plugin. Java applets are allowed to create socket connections

from the client to any port on the same host that the applet was served from. As an

example, an applet served from port 80 on example.com can open a raw socket to port

443 on example.com without requesting any additional access. However, due to security

concerns, the Java plugin is currently blocked by default on several client platforms, and

may require additional user interaction to activate the Java plugin. Such user interaction

would be too obtrusive for our experiment and client diversity suffers greatly once all

potential interactive platforms are removed from the experiment. Another side effect of

running a Java applet on some platforms is that a visible icon would be displayed in the

system tray, which might annoy or confuse some of the website’s users.
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Lenient Certificate Parsing

Since we implemented the SSL handshake process on our own, we must extract the SSL

certificates from a raw byte dump of the SSL handshake observed on the client, by parsing

the ServerHello and ServerCertificate messages. Surprisingly, in our initial attempts, we

found that this seemingly straightforward extraction process failed occasionally. By man-

ual inspection, we noticed that some of the recorded SSL messages were slightly different

from the SSL/TLS standards. As a result, we intentionally parsed the SSL handshake in

as lenient a manner as possible in order to extract certificates even if the SSL message

format did not conform exactly to the standards. We did not discard these malformed

handshakes as we theorize that they are caused by either transmission errors or software

errors in the intercepting proxy.

Websites may choose to perform certificate extraction on-the-fly in the client-side

applet, or simply send the handshake raw bytes to their log servers for post-processing.

We took the latter approach, since it enabled us to preserve the SSL handshake bytes for

further investigation, even if early versions of our extraction code failed (or even crashed

unexpectedly) while parsing certificates.

3.2.2 Implementation

We have implemented our client-side applets for both the Flash Player and Java plugins.

With similar functionality, the SWF file (2.1 KB) was slightly smaller than the Java

applet (2.5 KB). Since Flash Player was supported on a larger client population and is

considered less obtrusive to users, we deployed the SWF file for our experiments.

To observe SSL connections on a large set of real-world clients, we deployed our client-

side applet on Facebook’s servers to run our experiments. We sampled a small portion

(much less than 1%) of the total connections on Facebook’s desktop website, particularly
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on the www.facebook.com domain. To avoid affecting the loading time of the website’s

original web pages, our applets are programmed to load several seconds after the original

page has completed loading. This is done by using a JavaScript snippet that dynamically

inserts a HTML object tag that loads the SWF file into the web page visited by the user.

Basically, the script is triggered only after the original page finishes loading, and further

waits a few seconds, before actually inserting the applet. Additionally, we built server-

side mechanisms to allow granular control over the sampling rates in specific countries or

networks. This granularity enables us to increase the sampling rate for certain populations

in response to the detection of a specific attack.

To support Flash-based socket connections used by our SWF files, we have set up

Flash socket policy servers that listens on port 843 of the website, which are configured

with a socket policy file that allows only its own applets to open socket connections to port

443. We also setup a logging endpoint on the HTTPS servers, in PHP, that parses the

reports, and aggregates data into our back-end databases. The extracted SSL certificates

were processed and read using the OpenSSL library. In addition, we built an internal web

interface for querying the log reports.

3.2.3 Experimental Results

Using the Flash-based detection method, we conducted the first large-scale experiment in

an attempt to catch forged SSL certificates in the wild. We served our client-side applet

to a set of randomly sampled clients on Facebook’s website. We collected and analyzed

data from November 20, 2012 to March 31, 2013.1

First of all, we noticed that only a portion of the sampled clients actually completed

our detection procedure, explained below. As shown in Table 3.1, a total of 9, 179, 453

1Personally identifiable information (IP addresses and HTTP cookies) were removed from our database
after a 90-day retention period.
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Procedure Count

1. Inserted HTML object tag into web page 9, 179, 453
2. Downloaded SWF file from server 6, 908, 675
3. Sent report to logging server 5, 415, 689

Table 3.1: Number of clients that completed each step of the detection procedure

page views on Facebook’s desktop website had our HTML object tag dynamically inserted.

Our web servers logged 6, 908, 675 actual downloads for the SWF file. The download count

for the SWF file was noticeably lower than the number of object tags inserted. We reason

that this is possibly due to: (1) the Flash Player plugin was not enabled on the client,

(2) a few legacy browsers did not support our SWF object embedding method, or (3) the

user navigated away from the web page before the object tag was loaded. Our log servers

received a total of 5, 415, 689 reports from applets upon successful execution. Again, the

number of received reports is lower than the number of SWF file downloads. This is likely

due to the web page being closed or navigated away by the user, before the applet was

able to finish execution.

Next, we noticed that only 64% out of the 5, 415, 689 received reports contained

complete and well-formed certificate records, as shown in Table 3.2. We observed that

1, 965, 186 (36%) of the reported data indicated that the client caught SecurityErrorEvent

or IOErrorEvent exceptions in the Flash Player and failed to open a raw socket. We believe

that most of these errors were caused by firewalls blocking the socket policy request (for

example, whitelisting TCP ports 80 and 443 to only allow web traffic), thus not allowing

the Flash Player to retrieve a valid socket policy file from our socket policy servers (over

port 843). For clients behind these firewalls, we were not able to open socket connections

using Flash Player, although using Java might have worked in some legacy client plat-

forms. We discuss in Section 3.2.4 that similar measurements can be conducted on native
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Type Count

Well-formed certificates 3, 447, 719 (64%)
Flash socket errors 1, 965, 186 (36%)
Empty reports 2, 398 (0%)
Bogus reports 290 (0%)
HTTP responses 96 (0%)

Table 3.2: Categorization of reports

mobile platforms to avoid the drawbacks of Flash sockets.

In addition to the Flash socket errors, we also observed a few other types of erroneous

reports. There were 2, 398 reports that were empty, indicating that the SWF file failed

to receive any certificates during the SSL handshake. This might have been caused by

firewalls that blocked SSL traffic (port 443). There were 96 reports that received HTTP

responses during the SSL handshake, mostly consisting of error pages (HTTP 400 code)

or redirection pages (HTTP 302 code). These responses suggest that some intercepting

proxies contained logic that were modifying the client’s web traffic to block access to

certain websites (or force redirection to certain web pages, known as captive portals). We

found that some clients received a HTML page in plaintext over port 443, for instance,

linking to the payment center of Smart Bro, a Philippine wireless service provider. These

type of proxies do not appear to eavesdrop SSL traffic, but they inject unencrypted HTTP

responses into the client’s web traffic.

In addition, there were 290 reports that contained garbled bytes that could not be cor-

rectly parsed by our scripts. Although we could not successfully parse these reports, man-

ual inspection determined that 16 of the reports contained seemingly legitimate VeriSign

certificates that had been truncated in transit, presumably due to lost network connectiv-

ity. Another 37 of these reports appear to be issued by Kurupira.NET, a web filter, which

closed our SSL connections prematurely. We also found that 17 of the unrecognized POST
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requests on our log servers were sent from a Chrome extension called Tapatalk Notifier

(determined by the HTTP origin header), however we have no evidence that these false

POST requests were intentional.

Finally, we successfully extracted 3, 447, 719 (64%) well-formed certificates from the

logged reports. We used custom scripts (mentioned in Section 3.2.1) to parse the recorded

SSL handshake bytes. A total of 3, 440, 874 (99.8%) out of 3, 447, 719 observed certificates

were confirmed to be the website’s legitimate SSL certificates, by checking the RSA public

keys (or more strictly, by comparing the observed certificate bit-by-bit with its legitimate

certificates). We note that there were multiple SSL certificates (thus, multiple RSA

public keys) legitimately used by Facebook’s SSL servers during the period of our study,

issued by publicly-trusted commercial CAs including VeriSign, DigiCert, and Equifax.

Most interestingly, we discovered that 6, 845 (0.2%) of the observed certificates were not

legitimate, nor were they in any way approved by Facebook. We further examine these

captured forged certificates in Section 3.3.

3.2.4 Limitations

Before we move on, we offer insights on the limitations of our detection method. It is

important to point out that the goal of our implementation was not to evade the SSL man-

in-the-middle attacks with our detection mechanism. Admittedly, it would be difficult to

prevent professional attackers that are fully aware of our detection method. We list below

some ways that an attacker might adaptively evade our detection:

• Attackers may corrupt all SWF files in transmission, to prevent our client-side applet

from loading. However, this approach would cause many legitimate applications

using SWF files to break. Of course, the attacker could narrow the scope of SWF

blacklisting to include only the specific SWF files used in this detection. In response,
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websites may consider randomizing the locations of their SWF files.

• Attackers may restrict Flash-based sockets by blocking Flash socket policy traffic

on port 843. To counter this, websites could possibly serve socket policy files over

firewall-friendly ports (80 or 443), by multiplexing web traffic and socket policy

requests on their servers. In addition, websites could try falling back to Java applets

on supporting clients if Flash-based sockets are blocked.

• Attackers may try to avoid intercepting SSL connections made by the Flash Player.

However, the website may tailor its client-side applet to act similarly to a standard

browser.

• In theory, attackers could possibly tamper the reports (assuming that the measured

client was under an SSL man-in-the-middle attack, and probably clicked through

SSL warnings, if any), and trick our log servers to believe that the website’s legiti-

mate certificate was observed. Under this scenario, the website may need additional

mechanisms to verify the integrity of their reports.

At the time of this study, there is no reason to think that any attacker is tamper-

ing our reports, or even aware of our detection method. We do not consider attackers

that have obtained access to Facebook’s internal servers. As shown in Section 3.2.3, our

current methodology has successfully captured direct evidences of unauthorized SSL in-

terceptions in the wild. However, if more websites become more aggressive about this sort

of monitoring, we might get into an arms race, unfortunately.

Fortunately, many popular websites nowadays have the option to leverage their native

mobile applications for detecting attacks. While our initial implementation targeted desk-

top browsers, we suggest that similar mechanisms can be implemented, more robustly,
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on mobile platforms such as iOS and Android.2 Native mobile applications have the ad-

vantage of opening socket connections without Flash-based socket policy checks, and are

more difficult for network attackers to bypass (since the Flash applet is no longer neces-

sary, and native applications can be programmed to act exactly like a standard browser).

Furthermore, mobile clients can also implement additional defenses (e.g., certificate pin-

ning [59]) to harden itself against SSL man-in-the-middle attacks (e.g., preventing the

tampering of reports), while performing similar measurement experiments.

3.3 Analysis of Forged SSL Certificates

From the experiments in Section 3.2.3, we collected 6, 845 forged certificates from real-

world clients connecting to Facebook’s SSL servers. In this section, we analyze the root

cause of these injected forged SSL certificates.

3.3.1 Certificate Subjects

First, Table 3.3 shows the subject organizations of forged certificates. As expected, the

majority of them spoofed the organization as Facebook. There were over a hundred

forged certificates that excluded the organization attribute entirely. Again, we confirmed

93 certificates that were attributed to Fortinet Ltd.

Next, we inspect the observed subject common names of the forged SSL certificates,

summarized in Table 3.4. Normally, the subject common name of the SSL certificate

should match the hostname of the website to avoid triggering SSL certificate warnings in

the browser. While most of the forged certificates used the legitimate website’s domains

as the subject common name, there were a few certificates that used unrelated domains

as well.

2After our initial study, Facebook has implemented our methodology across their native mobile appli-
cations.
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Subject Organization Count

Facebook, Inc. 6,552
Empty 131
Fortinet Ltd. / Fortinet 93
Louisville Free Public Library 10
Other 59

Table 3.3: Subject organizations of forged certificates

Unsurprisingly, most of the forged SSL certificates used the wildcard domain *.facebook.com

as the subject common name in order to avoid certificate name validation errors. This

suggests that most of the attacking entities were either specifically targeting Facebook’s

website by pre-generating certificates that match the website’s name, or using automated

tools to generate the certificates on-the-fly. None of the forged certificates were straight

clones of Facebook’s legitimate certificates (that replicated all the X.509 extension fields

and values). There were some certificates that used IP addresses as common name, for

example, 69.171.255.255 (which appears to be one of Facebook’s server IP addresses).

We noticed that a number of forged certificates used a subject name that starts with two

characters FG concatenated with a long numeric string (e.g., FG600B3909600500). These

certificates were issued by Fortinet Ltd., a company that manufactures SSL proxy devices

which offer man-in-the-middle SSL inspection. Similarly, we found 8 certificates that had

a subject common name “labris.security.gateway SSL Filtering Proxy,” which is also an

SSL proxy device. There were a few other common names observed that were likely ama-

teur attempts of SSL interception, such as localhost.localdomain, which is the default

common name when generating a self-signed certificate using the OpenSSL library.

For the forged SSL certificates that did not use a subject common name with facebook.com

as suffix, we also checked if any subject alternative names were present in the certificate.

Subject alternative names are treated as additional subject names, and allow certificates
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Subject Common Name Count

*.facebook.com 6,491
www.facebook.com 117
pixel.facebook.com 1
m.facebook.com 1
facebook.com 1
* 1
IP addresses 118
FG... / Fortinet / FortiClient 93
Other 22

Table 3.4: Subject common names of forged certificates

to be shared across multiple distinct hostnames. This may allow attackers to generate

a single forged certificate for attacking multiple different websites. For the 233 forged

certificates that did not provide a matching common name, none of them provided a

matching subject alternative name. Even though these 233 (3.4%) forged certificates

would definitely trigger name mismatch errors, there is still a significant possibility that

users may ignore the browser’s security warnings anyway.

3.3.2 Certificate Issuers

We examine the issuer organizations and issuer common names of each forged SSL certifi-

cate. Table 3.5 lists the top issuer organizations of the forged certificates. At first glance,

we noticed several forged certificates that fraudulently specified legitimate organizations

as the issuer, including 5 using Facebook, 4 using Thawte, and one using VeriSign. These

invalid certificates were not actually issued by the legitimate companies or CAs, and were

clearly malicious attempts of SSL interception. Since 166 of the forged certificates did

not specify its issuer organization (or empty), we also checked the issuer common names,

listed in Table 3.6.

We manually categorized the certificate issuers of forged certificates into antivirus,
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Issuer Organization Count

Bitdefender 2,682
ESET, spol. s r. o. 1,722
BullGuard Ltd. 819
Kaspersky Lab ZAO / Kaspersky Lab 415
Sendori, Inc 330
Empty 166
Fortinet Ltd. / Fortinet 98
EasyTech 78
NetSpark 55
Elitecore 50
ContentWatch, Inc 48
Kurupira.NET 36
Netbox Blue / Netbox Blue Pty Ltd 25
Qustodio 21
Nordnet 20
Target Corporation 18
DefenderPro 16
ParentsOnPatrol 14
Central Montcalm Public Schools 13
TVA 11
Louisville Free Public Library 10
Facebook, Inc. 5
thawte, Inc. 4
Oneida Nation / Oneida Tribe of WI 2
VeriSign Trust Network 1
Other (104) 186

Table 3.5: Issuer organizations of forged certificates
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Issuer Common Name Count

Bitdefender Personal CA.Net-Defender 2,670
ESET SSL Filter CA 1,715
BullGuard SSL Proxy CA 819
Kaspersky Anti-Virus Personal Root Certificate 392
Sendori, Inc 330
IopFailZeroAccessCreate 112

...
*.facebook.com 6
VeriSign Class 4 Public Primary CA 5
Production Security Services 3
Facebook 1
thawte Extended Validation SSL CA 1
Other (252) 794

Table 3.6: Issuer common names of forged certificates

firewalls, parental control software, adware, and malware. Notably, we observed an in-

triguing issuer named IopFailZeroAccessCreate that turned out to be produced by malware,

which we discuss in detail below.

• Antivirus. By far the top occurring issuer was Bitdefender with 2, 682 certificates,

an antivirus software product which featured a “Scan SSL” option for decrypting

SSL traffic. According to their product description, Bitdefender scans SSL traffic

for the presence of malware, phishing, and spam. The second most common issuer

was ESET with 1, 722 certificates, another antivirus software product that provides

SSL decryption capabilities for similar purposes. Several other top issuers were

also vendors of antivirus software, such as BullGuard, Kaspersky Lab, Nordnet,

DefenderPro, etc. These software could possibly avoid triggering the browser’s

security errors by installing their self-signed root certificates into the client’s system.

Note that the observed antivirus-related certificate counts are not representative of

the general antivirus usage share of the website’s users, since SSL interception is
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often an optional feature in these products. However, if any antivirus software

enabled SSL interception by default, we would expect a higher number of their

forged certificates observed.

Supposing that these users intentionally installed the antivirus software on their

hosts, and deliberately turned on SSL scanning, then these antivirus-generated cer-

tificates would be less alarming. However, one should be wary of professional attack-

ers that might be capable of stealing the private key of the signing certificate from

antivirus vendors, which may essentially allow them to spy on the antivirus’ users

(since the antivirus’ root certificate would be trusted by the client). Hypothetically,

governments could also compel antivirus vendors to hand over their signing keys.

• Firewalls. The second most popular category of forged certificates belongs to

commercial network security appliances that perform web content filtering or virus

scanning on SSL traffic. As observed in the certificate subject fields, Fortinet was

one of the issuers that manufactures devices for web content filtering with support

for HTTPS deep inspection. NetSpark was another web content filtering device

manufacturer offering similar capabilities. According to their product description,

the user’s content is unencrypted for inspection on NetSpark’s servers, and then re-

encrypted under NetSpark’s SSL certificate for the end user. We observed a number

of device vendors that provided similar devices, such as EliteCore, ContentWatch,

and Netbox Blue. There were also software solutions that provided selective website

blocking, such as Kurupira.NET. Some appliance vendors aggressively marketed SSL

content inspection as a feature which cannot be bypassed by users. For example,

ContentWatch’s website provided the following product description for their firewall
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devices:3

“This technology also ensures the users cannot bypass the filtering using

encrypted web traffic, remote proxy servers or many of the other common

methods used circumvent content filters.”

Interestingly, EliteCore’s Cyberoam appliances have previously been discovered [60]

to be using the same CA private key across all Cyberoam devices. This is par-

ticularly dangerous, since the universal CA private key can be extracted from any

single device by an attacker. This vulnerabilitiy allows an attacker to seamlessly

perform SSL man-in-the-middle attacks against users of benign Cyberoam devices,

because the attacker can issue forged server certificates that will be accepted by

other clients that have installed Cyberoam’s CA certificate. Reportedly, Cyberoam

issued an over-the-air patch to generate unique CA certificates on each device. Nev-

ertheless, we should be aware that other device manufacturers are likely to introduce

similar security vulnerabilities.

• Adware. We observed 330 instances of forged certificates issued by a company

named Sendori. This company offers a browser add-on that claims to automatically

correct misspelled web pages. However, using Google Search to query the string

“Sendori” revealed alarming discussions about the add-on actually hijacking DNS

entries for the purposes of inserting advertisements into unrelated websites.4 This

form of adware actively injects content into webpages, and could possibly be detected

using Web Tripwires or CSP (as described in Section 3.4.1).

3http://www.contentwatch.com/solutions/industry/government
4http://helpdesk.nwciowa.edu/index.php?/News/NewsItem/View/10

http://www.contentwatch.com/solutions/industry/government
http://helpdesk.nwciowa.edu/index.php?/News/NewsItem/View/10


CHAPTER 3. UNAUTHORIZED INTERCEPTIONS 65

• Malware. As previously mentioned, we noticed that an unknown issuer named

IopFailZeroAccessCreate appeared relatively frequently in our dataset. We manually

searched the name on the Internet and noticed that multiple users were seeing SSL

certificate errors of the same issuer, and some were suggesting that the user could

be under SSL man-in-the-middle attacks by malware.5 Upon deeper investigation,

we discovered 5 forged certificates that shared the same subject public key as Iop-

FailZeroAccessCreate, yet were generated with their issuer attribute set as “VeriSign

Class 4 Public Primary CA.” We confirmed with Symantec/VeriSign that these sus-

picious certificates were not issued through their signing keys. This was obviously a

malicious attempt to create a certificate with an issuer name of a trusted CA. These

variants provide clear evidence that attackers in the wild are generating certificates

with forged issuer attributes, and even increased their sophistication during the time

frame of our study.

In Figure 3.3, we illustrate the geographic distribution of the certificates issued by

IopFailZeroAccessCreate (and the forged “VeriSign Class 4 Public Primary CA”) on

a world map. As shown, the infected clients were widespread across 45 different

countries. The countries with the highest number of occurrences were Mexico,

Argentina and the United States, with 18, 12, and 11 occurrences, respectively.

This shows that the particular SSL man-in-the-middle attack is occurring globally

in the wild. While it is possible that all of these attacks were amateur attackers

individually mounting attacks (e.g., at their local coffee shop), it is certainly odd that

they happened to use forged certificates with the same subject public key. However,

this is not so unreasonable if these attacks were mounted by malware. Malware

researchers at Facebook, in collaboration with the Microsoft Security Essentials

5http://superuser.com/q/421224

http://superuser.com/q/421224
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Figure 3.3: Geographic distribution of forged SSL certificates generated by the malicious
issuer IopFailZeroAccessCreate

team, were able to confirm these suspicions and identify the specific malware family

responsible for this attack. Since our experiments only tested SSL connections to

Facebook’s servers (only for the www.facebook.com domain), we cannot confirm

whether this attack also targeted other websites. In response to our discovery, the

website notified the infected users, and provided them with malware scan and repair

instructions.

In addition, there were 4 other suspicious certificates issued under the organization

name of thawte, Inc with three of them using “Production Security Services” as the

issuer common name, and one using “thawte Extended Validation SSL CA.” These
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instances could be the same malware attack previously spotted by some Opera

users [61], in which forged certificates pretending to be issued by Thwate were

observed. These 4 forged certificates were observed in Italy, Spain, and the United

States.

We note that a sophisticated attacker utilizing malware could install their self-

signed CA certificates on clients in order to suppress browser security errors. Such

an attacker is likely capable of stealing confidential information, by reading from

protected storage or logging the user’s keystrokes. Nevertheless, mounting an SSL

man-in-the-middle attack further enables a general way of capturing and recording

the victim’s web browsing activities in real-time.

• Parental Control Software. Some forged SSL certificates were issued by parental

control software, including 21 from Qustodio and 14 from ParentsOnPatrol. These

type of software are designed to enable parents to monitor and filter the online

activities of their children. Whether such level of control is appropriate is beyond

the scope of our work.

While the remaining 104 other distinct issuer organizations in Table 3.5 and 252

other distinct common names in Table 3.6 do not appear to be widespread malicious

attempts (based on manual inspection), the possibility remains that some may still be

actual attacks.

3.4 Related Work

3.4.1 Webpage Tamper Detection

There are existing proposals aiming to assist websites in detecting whether their unen-

crypted webpages have been tampered with in transit. We focus on detection methods
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that do not require user interaction, and do not require the installation of additional

software or browser extensions on the clients’ machines.

• Web Tripwires. Web Tripwires [62] is a technique proposed to ensure data in-

tegrity of web pages, as an alternative to HTTPS. Websites can deploy JavaScript

to the client’s browser that detects modifications on web pages during transmission.

In their study of real-world clients, over 1% of 50, 000 unique IP addresses observed

altered web pages. Roughly 70% of the page modifications were caused by user-

installed software that injected unwanted JavaScript into web pages. They found

that some ISPs and enterprise firewalls were also injecting ads into web pages, or be-

nignly adding compression to the traffic. Interestingly, they spotted three instances

of client-side malware that modified their web pages. Web Tripwires was mainly de-

signed to detect modifications to unencrypted web traffic. By design, Web Tripwires

does not detect passive eavesdropping (that does not modify any page content), nor

does it detect SSL man-in-the-middle attacks. In comparison, our goal is to be able

to detect eavesdropping on encrypted SSL connections.

• Content Security Policy. Content Security Policy (CSP) [63] enables websites to

restrict browsers to load page content, like scripts and stylesheets, only from a server-

specified list of trusted sources. In addition, websites can instruct browsers to report

CSP violations back to the server with the report-uri directive. Interestingly, CSP

may detect untrusted scripts that are injected into the protected page, and report

them to websites. Like Web Tripwires, CSP does not detect eavesdropping on SSL

connections.
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3.4.2 Certificate Observatories

A number of SSL server surveys [52, 53, 54, 55] have analyzed SSL certificates and certifi-

cate authorities on the Internet. The EFF SSL Observatory [52] analyzed over 1.3 million

unique SSL certificates by scanning the entire IPv4 space, and indicated that 1,482 trusted

certificate signers are being used. Similarly, Durumeric et al. [55] collected over 42 million

unique certificates by scanning 109 million hosts, and identified 1,832 trusted certificate

signers. Holz et al. [53] analyzed SSL certificates by passively monitoring live SSL traffic

on a research network in addition to actively scanning popular websites, and found that

over 40% certificates observed were invalid due to expiration, incorrect host names, or

other reasons. Akhawe et al. [54] analyzed SSL certificates by monitoring live user traf-

fic at several institutional networks, and provided a categorization of common certificate

warnings, including server mis-configurations and browser design decisions. However, ex-

isting studies do not provide insights on forged certificates, probably because network

attackers are relatively rare on those research institutional networks. In our work, we set

out to measure real-world SSL connections from a large and diverse set of clients, in an

attempt to find forged SSL certificates.

3.4.3 Certificate Validation with Notaries

Perspectives [64] is a Firefox add-on that compares server certificates against multiple

notaries (with different network vantage points) to reveal inconsistencies. Since public

notaries observe certificates from diverse network perspectives, a local impersonation at-

tack could be easily detected. Convergence [65] extends Perspectives by anonymizing

the certificate queries for improved privacy, while allowing users to configure alternative

verification methods (such as DNSSEC). The DetecTor [66] project (which extends Dou-

blecheck [67]) makes use of the distributed Tor network to serve as external notaries.
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Crossbear [68] further attempts to localize the attacker’s position in the network using

notaries. However, notary approaches might produce false positives when servers switch

between alternative certificates, and clients may experience slower SSL connection times

due to querying multiple notaries during certificate validation. Further, these pure client-

side defenses have not been adopted by mainstream browsers, thus cannot protect the

majority of (less tech-savvy) users.

3.4.4 HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) [69], the successor of ForceHTTPS [70], is a

HTTP response header that allows websites to instruct browsers to make SSL connections

mandatory on their site. By setting the HSTS header, websites may prevent network

attackers from performing SSL stripping attacks [71] (relatedly, Nikiforakis et al. [72]

proposed HProxy to detect SSL stripping attacks on clients by checking the security

characteristics of a SSL site against previous visits in browser history). A less obvious

security benefit of HSTS is that browsers simply hard-fail when seeing invalid certificates,

and do not give users the option to ignore SSL errors. This feature prevents users from

accepting untrusted certificates when under man-in-the-middle attacks by amateur script

kiddies.

3.4.5 Certificate Pinning

The Public Key Pinning Extension for HTTP (HPKP) [73] proposal allows websites to de-

clare a set of legitimate certificate public keys with a HTTP header, and instruct browsers

to reject future connections with unknown certificate public keys. HPKP provides protec-

tion against SSL man-in-the-middle attacks that use unauthorized, but possibly trusted,

certificates. HPKP automatically rejects fraudulent certificates even if they would be
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otherwise trusted by the client. Both HSTS and HPKP defenses require that clients must

first visit the legitimate website securely before connecting from untrusted networks. This

requirement is lifted if public key pins are pre-loaded in the browser, such as in Google

Chrome [74] and Internet Explorer (with EMET) [75], although this approach may not

scale for the entire web. Notably, Chrome’s pre-loaded public key pinning mechanism has

successfully revealed several high-profile CA incidents, in which mis-issued certificates

were used to attack Google’s domains in the wild. However, in current implementations,

Chrome’s public key pinning does not reject certificates that are issued by a locally trusted

signer, such as antivirus, corporate surveillance, and malware.

A related proposal, Trust Assertions for Certificate Keys (TACK) [76], allows SSL

servers to pin a server-chosen signing key with a TLS extension. In contrast with HPKP,

TACK pins a signing key that chosen by the server, separate from the private key corre-

sponding to the server’s certificate, and can be short-lived. TACK allows websites with

multiple SSL servers and multiple public keys to pin the same signing key. Once the

browser receives a TACK extension from an SSL site, it will require future connections

to the same site to be signed with the same TACK signing key, or otherwise, reject the

connection. Another proposal called DVCert [77] delivers a list of certificate pins over

a modified PAKE protocol in an attempt to detect SSL man-in-the-middle attacks, but

also requires modifications to existing clients and servers.

The concept of public key pinning (or certificate pinning) has previously been imple-

mented as a pure client-side defense as well. Firefox add-ons such as Certificate Patrol [78]

and Certlock [79] were designed to alarm users when a previously visited website starts

using a different certificate. However, without explicit signals from the server, it may

be difficult to accurately distinguish real attacks from legitimate certificate changes, or

alternative certificates.



CHAPTER 3. UNAUTHORIZED INTERCEPTIONS 72

3.4.6 Certificate Audit Logs

Several proposals have suggested the idea of maintaining cryptographically irreversible

records of all the legitimately-issued certificates, such that mis-issued certificates can be

easily discovered, while off-the-record certificates are simply rejected. Sovereign Keys [80]

requires clients to query public timeline servers to validate certificates. Certificate Trans-

parency (CT) [81] removes the certificate queries from clients by bundling each certificate

with an audit proof of its existence in the public log. Accountable Key Infrastructure

(AKI) [82] further supports revocation of server and CA keys. These defenses are de-

signed to protect against network attackers (not including malware). However, browsers

need to be modified to support the mechanism, and changes (or cooperation) are needed on

the CAs or servers to deliver the audit proof. Encouragingly, Google has announced their

plan to use Certificate Transparency for all EV certificates in the Chrome browser [83].

3.4.7 DNS-based Authentication

DNS-based Authentication of Named Entities (DANE) [84] allows the domain operator

to sign SSL certificates for websites on its domain. Similar to public key pinning defenses,

DANE could allow websites to instruct browsers to only accept a pre-defined set of cer-

tificates. This approach prevents any CAs (gone rogue) from issuing trusted certificates

for any domain on the Internet. Another related proposal, the Certification Authority

Authorization (CAA) [85] DNS records, can specify that a website’s certificates must be

issued under a specific CA. However, these approaches fundamentally rely on DNSSEC

to prevent forgery and modification of the DNS records. Until DNSSEC is more widely

deployed on the Internet, websites must consider alternative defenses.



Chapter 4

Prefetching and Prevalidating
Certificates

The work in this chapter was done in collaboration with Emily Stark, Dinesh Israni, Collin

Jackson, and Dan Boneh.

The standard TLS handshake requires two round trips before a client or server can send

application data. The network latency imposed by the handshake impacts user experience

and discourages websites from enabling TLS. A less-known but significant contributor to

the cost of TLS is the validation process of the server’s certificate. The web browser

validates the server’s certificate using certificate revocation protocols such as the Online

Certificate Status Protocol (OCSP), which adds additional latency and leads clients to

cache certificate validation results (trading off the freshness of certificate validation).

A number of existing proposals have mitigated some of the cost of TLS by decreasing

the number of round trips for a full TLS handshake. A proposal called Fast-track removes

one round trip from the handshake when the client has cached long-lived parameters from

a previous handshake [86]. Another proposal, TLS False Start, reduces the handshake to

one round trip when whitelisted secure cipher suites are used [87], which works only when

the client sends data first, as in the case of HTTP. A third proposal, TLS Snap Start,

73
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reduces the handshake to zero round trips when the client has performed a full handshake

with the server in the past and has cached static parameters [88]. Even with Snap Start,

the client cannot cache the certificate’s validation status beyond its validity period, and

so Snap Start cannot always eliminate the certificate validation step.

In this chapter, we conducted a study of OCSP responders in the wild, including

measurements of the validity durations and response times. We observe a noticeable

penalty for TLS connection time due to OCSP validation. We present server certificate

prefetching and prevalidation, a method by which web browsers can perform zero round

trip Snap Start handshakes with a server even if the browser has never seen the server

before. In addition to enabling Snap Start handshakes, certificate prefetching allows the

client to prevalidate the certificate, so that certificate validation does not lead to perceived

latency for the user. By allowing browsers to use Snap Start more often and by removing

certificate validation from the time-critical step of a page load, prefetching can encourage

servers to enable TLS more widely and allow browsers to verify certificate status more

often and strictly.

4.1 Performance Cost of OCSP

To better understand the performance cost of certificate validation, we conducted mea-

surements of OCSP lookup response times in the wild.

4.1.1 Experimental Setup

To collect statistics of OCSP responses in the wild, we ran experiments on the Perspectives

system [64]. Perspectives has a collection of network notary servers that periodically probe

HTTPS servers and collect public key certificates, which allows clients (using our browser

extensions) to compare public keys from multiple network vantage points. In this work,
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we extended the Perspectives system to probe OCSP responders for certificate revocation

statuses if the queried certificate was configured with an OCSP responder URL. The data

collected on the notary servers include the revocation status of the certificate, the validity

lifetime of the OCSP response, and the latency of the OCSP lookup. In addition to

probing OCSP responders from the notary servers, we performed latency measurements

for OCSP lookups on clients that have installed our Perspectives extension for Google

Chrome. For each certificate that was fetched from an HTTPS website, we performed an

OCSP request and measured the elapsed time to complete the lookup. As of May 2011,

there were 242 active clients contributing data for this measurement. The notary servers

receive data from clients with our Google Chrome extension as well as the previously

deployed Firefox extension.

4.1.2 Results

OCSP Response Validity Lifetime

Table 4.1 gives the OCSP response validity lifetime for certificates from OCSP responders

for which the notary servers have performed more than 1000 OCSP lookups. We observe

that 87.14% of the OCSP responses are valid for a period of equal to or less than 7

days. The minimum observed lifetime was 13 minutes. Analyzing the lifetime of OCSP

responses helps us determine how often a prefetched OCSP response would expire before

the certificate is actually used. Shorter OCSP response validity lifetimes reduce the

effectiveness of OCSP response caching.

OCSP Lookup Response Time

Figure 4.1 shows the distribution of the OCSP lookup response times that we recorded.

The data shows that although 8.27% of the probes took less than 100 ms to complete, a

majority of the OCSP probes (74.8%) took between 100 ms and 600 ms. In our measure-
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OCSP responder
Number
of OCSP
lookups

Number of
distinct
certificates

Validity lifetime

Avg Min Max

http://EVSSL-ocsp.geotrust.com 2035 198 6 days 23 hours 12 hours 7 days 11 hours

http://ocsp.cs.auscert.org.au 1060 97 4 days 4 days 4 days

http://ocsp.cacert.org/ 2381 76 3 hours 15 minutes 23 hours

http://ocsp.usertrust.com 3846 315 4 days 4 days 4 days

http://ocsp.godaddy.com 90925 4139 7 hours 6 hours 11 hours

http://ocsp.comodoca.com 56928 4581 4 days 4 days 4 days

http://ocsp-ext.pki.wellsfargo.com/ 2612 53 20 hours 13 minutes 1 day

http://ocsp.entrust.net 18691 1474 7 days 14 hours 7 days 8 days 4 hours

http://ocsp.netsolssl.com 4117 570 4 days 4 days 4 days

http://EVIntl-ocsp.verisign.com 64403 1566 7 days 7 days 86 days 7 hours

http://ocsp.digicert.com 92093 1672 7 days 7 days 7 days

http://ocsp.starfieldtech.com/ 9016 480 11 hours 6 hours 1 day 5 hours

http://ocsp.webspace-forum.de 2228 29 4 days 4 days 4 days

http://ocsp.startssl.com/sub/class1/server/ca 4963 348 5 hours 1 hour 1 day 4 hours

http://ocsp.startssl.com/sub/class2/server/ca 4597 160 6 hours 1 hour 1 day 4 hours

http://ocsp.serverpass.telesec.de/ocspr 2212 248 1 hour 1 hour 1 hour

http://ocsp.gandi.net 1060 78 4 days 4 days 4 days

http://EVSecure-ocsp.verisign.com 108993 465 7 days 7 days 7 days

http://ocsp.globalsign.com/ExtendedSSL 2441 115 7 days 7 days 7 days

http://ocsp.verisign.com 247251 12433 7 days 7 days 20 days 21 hours

http://ocsp.thawte.com 134321 3811 7 days 7 days 7 days

http://ocsp.tcs.terena.org 7823 675 4 days 4 days 4 days

Table 4.1: Validity lifetime of OCSP responses.

ments, the median OCSP lookup time is 291 ms and the mean is 497.55 ms. Table 4.2

gives the response time statistics breakdown of OCSP responders for which at least 500

OCSP probes were performed. Our data for OCSP responder response times only include

measurements performed at the client side (using the Perspectives extension for Google

Chrome) and not on the notary servers. We believe the measurements from real web

clients more accurately reflect the latency experienced by a user. We observe that 95.3%

of the OCSP responses are cached by the OCSP responders and are not generated at the

time of request. These OCSP responders therefore do not support the optional OCSP

nonce specified in RFC 2560. If OCSP responders are required to support nonces and

generate responses at the time of request, we expect an increase in response time for the

OCSP responder to generate a response.
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Figure 4.1: Cumulative distribution of OCSP lookup response times.

OCSP responder Number of lookups
Response time

Median (ms) Min (ms) Max (ms) Standard deviation
http://EVSecure-ocsp.verisign.com 938 167 25 7235 610.76
http://ocsp.digicert.com 1372 252 12 12303 759.64
http://ocsp.godaddy.com/ 741 101 20 4832 515.53
http://ocsp.thawte.com 4209 564 10 12376 976.09
http://ocsp.verisign.com 1389 279 21 10209 743.53

Table 4.2: Response times of OCSP responders.

4.1.3 Lessons

The actual response time of a user navigating to a previously unvisited HTTPS website

typically consists of several round trip times: the DNS lookup, the TCP three-way hand-

shake, the TLS handshake, the OCSP lookup (usually blocking the completion of the TLS

handshake), and finally the HTTP request-response protocol. Our measurements show

that OCSP validation is a significant source of user-perceived latency. Browsers have

implemented a techinque called DNS prefetching to reduce the DNS lookup time, which

we further extend to prefetch and prevalidate TLS server certificates.

DNS Prefetching

When establishing connections with web servers, the web browser relies on the Domain

Name System (DNS) [89] to translate meaningful host names into numeric IP addresses.

The IP addresses of recently resolved domain names are typically cached by the local
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DNS resolver, e.g., the web browser or operating system. If the resolution of a domain

name is not locally cached, the DNS resolver sends requests over the network to DNS

servers which answer the query by itself, or by querying other name servers recursively.

Previous studies reveal that DNS resolution times cause significant user perceived latency

in web surfing, more so than transmission time [90]. To increase responsiveness, modern

browsers such as Google Chrome implement DNS prefetching (or pre-resolving), which

resolves domain names before the user clicks on a link [91]. Once the domain names have

been resolved, when the user navigates to that domain, there will be no effective user

delay due to DNS resolutions.

Web browsers deploy various heuristics to determine when DNS prefetching should be

performed. A basic approach is to scan the content of each rendered page, and resolve

the domain name for each link. In Google Chrome, the browser pre-resolves domain

names of auto-completed URLs while the user is typing in the omnibox. In addition,

DNS prefetching may be triggered when the user’s mouse hovers over a link, and during

browser startup for the top 10 domains. Google’s measurements show that the average

DNS resolution time when a user first visits a domain is around 250 ms, which can be

saved by DNS prefetching [31].

Browser vendors also allow web page authors to control which links on their pages

trigger DNS preresolutions. When a web page includes a tag of the form

<link rel="dns-prefetching" href="//domain">

then domain will be preresolved. Further, a web page can use a

<meta http-equiv="x-dns-prefetch-control">

tag to specify that certain links should or should not be preresolved.
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4.2 Server Certificate Prefetching and Prevalidation

To reduce OCSP latency, a server may allow clients to prefetch its handshake information

by publishing its certificate, cipher suite choice, and orbit. (For simplicity, we refer to

the prefetching of this information and the prevalidation of the certificate as “certificate

prefetching.”) The client obtains this information when it is likely that the user might

navigate to the website. The browser can use the same triggers that it uses to pre-resolve

hostnames to determine when certificate prefetching is useful: for example, when the user

is typing in the omnibox or when a user is viewing a page with links to HTTPS websites.

In this section, we discuss two major benefits of certificate prefetching, and describe

various methods for clients to download server information.

4.2.1 Benefits of prefetching

Enable abbreviated handshakes.

After prefetching a server’s certificate, a web browser can use Snap Start without having

performed a full handshake with the server in the past. Studies of user browsing behavior

suggest that at least 20% of websites that a user visits in a browsing session are sites that

the user has never visited before [92, 93, 94, 95]. These studies may underestimate how

often certificate prefetching will be useful, since Snap Start without prefetching cannot

be used when the browser cache has been cleared since the browser’s last full handshake

with a server.

Enable prevalidation of server certificates.

Prefetching the server certificate allows the browser to validate the certificate in the back-

ground before the user navigates to the website. Our measurements in Section 4.1 show

that certificate validation performed during the TLS handshake introduces significant
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latency. Provided that the certificate status is not in the client’s cache, a Snap Start

handshake with a prefetched and prevalidated certificate is significantly faster than a

Snap Start handshake without prefetching.

4.2.2 Prefetching methods

A näıve prefetching method is to open a TLS connection to the server and cache the

necessary information needed to perform a Snap Start handshake. These dummy connec-

tions basically perform a standard TLS handshake with the server, and would eventually

disconnect on timeout. However, many clients performing TLS dummy handshakes may

negatively impact server performance and also flood the server’s session cache. We discuss

four options for certificate prefetching that add little or no server load.

1. Prefetching with a truncated handshake. To perform a Snap Start hand-

shake, a web browser requires the server’s certificate, cipher suite choice, and orbit.

In a standard TLS handshake, the browser has obtained all this information by

the time it receives the ServerHelloDone message, so the browser can prefetch the

certificate and then truncate the handshake before either party performs any of the

TLS handshake’s expensive steps.

The browser can truncate the handshake by using the alert protocol that TLS

specifies. An alert may be sent at any point during a TLS connection, and alerts

specify a description (for example, unexpected message or bad record mac) and

an alert level of warning or fatal. If either party sends a fatal alert at any point

during the connection, then the server must invalidate the session identifier.

Thus the browser can prefetch a server’s certificate information by sending a Clien-

tHello message with an empty Snap Start extension and sending a fatal alert after

receiving the ServerHelloDone message. The alert ensures that the server closes the
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session, so that prefetching does not flood the server’s session cache or keep the

socket open longer than necessary. After caching the appropriate information and

validating the certificate, the browser can perform a Snap Start handshake if the

user actually navigates to the website.

Like full dummy handshakes, truncated handshakes allow a browser to prefetch cer-

tificate information even if the server has not taken any actions to enable prefetching.

A truncated handshake requires both the client and the server to do much less work

than a full dummy handshake, and as a result the impact on the server is less dra-

matic. Truncated handshakes will also dirty server logs; without adding a new TLS

alert number, a browser performing a truncated handshake for prefetching will have

to use an inaccurate alert such as user canceled or internal error to close the

connection.

2. Prefetching via HTTP GET. For a web browser to prefetch a certificate via a

HTTP GET request to the server, the server must place the concatenation of its

certificate, supported cipher suites, and orbit in a file at a standardized location. (In

our implementation, we prefetched from http://www.domain.com/cert.txt.) The

web browser retrieves the file, parses and validates the certificate, and caches all

the information for use in a Snap Start handshake later. Transmitting certificates

in plaintext over HTTP does not compromise security, as certificates are sent in

plaintext during the normal TLS handshake.

3. Prefetching from a CDN.To avoid placing any extra load on the server, a client

can attempt to prefetch certificate information from a CDN, for example by sending

a request to http://www.cdn.com/domain.com.crt. The browser cannot know in

advance which CDN a particular website uses to host its certificate information,
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so it can send requests to multiple CDNs to have a high probability of success-

fully prefetching a server’s certificate. Previous research suggests that sending re-

quests to a small number of CDNs will cover a large percentage of the CDN market

share [96]. Alternately, a DNS TXT record can hold the location where a browser

should prefetch a server’s certificate, so that the browser does not need to query mul-

tiple CDNs. Once the web browser has successfully obtained certificate information

from a CDN, it proceeds to parse the certificate and cache the information.

4. Prefetching from DNS. The server may place its certificate information in a

DNS record to offload the prefetching traffic. There has been previous work to

store certificates or CRLs in DNS using CERT resource records [97], although not

widely supported in practice. For the convenience of our prototype implementa-

tion, we stored the server’s certificate information in a standard DNS TXT resource

record, which allow servers to associate arbitrary text with the host name. Web

browsers can prefetch certificates by querying for the domain’s TXT record, in par-

allel with the domain’s A record, during the DNS prefetching phase. Although TXT

records were originally provisioned to hold descriptive text, in practice they have

been freely used for various other purposes. For example, the Sender Policy Frame-

work (SPF) [98] uses TXT records to specify which IP addresses are authorized to

send mail from that domain. We also consider recent proposals in the IETF DNS-

based Authentication of Named Entities (DANE) working group that suggest using

DNSSEC to associate public keys with domain names. They introduce a new TLSA

resource record type that allows storing a cryptographic hash of a certificate or the

certificate itself in DNS [84].

As with HTTP GET prefetching, transmitting certificates from DNS or a CDN
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does not decrease security. If the CDN or DNS servers are compromised and serve

a forged certificate, the user will be prompted with a certificate warning, just as if

an attacker had replaced a legitimate certificate in a normal TLS handshake.

4.2.3 Implementation

We developed prototype implementations of DNS and HTTP GET prefetching in Chromium,

revision 61348, as well as an OpenSSL prototype of Snap Start for running our experi-

ments. We modified Chromium’s DNS prefetching architecture; when the browser pre-

resolves a domain name for a HTTPS URL, we added code to send an asynchronous

request to fetch a DNS TXT record or a text file at a known location on the web server.

If the request is successful, the certificate is parsed out of the data and the browser sends

another asynchronous OCSP validation request. The certificate and validation status are

stored in a cache, which is checked before each TLS handshake to determine if a Snap

Start handshake is possible.

In our prototype implementation, certificate prefetches are triggered by the same

heuristics that trigger DNS preresolutions. If browsers adopt certificate prefetching, we

propose that they deploy certificate prefetching controls analogous to the DNS prefetching

controls discussed in Section 4.1.3. These controls can allow web page authors to opt-in

and opt-out of prefetches for specific domains, thereby helping the browser ensure that

certificate prefetching requests are useful and not wasteful.

4.3 Performance Evaluation

Our experiments sought to answer the following questions about certificate prefetching:

• By how much does prefetching reduce user-perceived latency? To answer

this question, we compared the latency of a Snap Start handshake with a prevali-
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dated certificate to a Snap Start handshake using online certificate validation.

• How does prefetching impact server performance? For each certificate

prefetching method, we measured user-perceived latency and server throughput as

the server was flooded with certificate prefetching requests. This data let us com-

pare the effect of traffic from different prefetching strategies on server performance.

We used a cloud-based service to generate load on our test server.

4.3.1 Experimental setup

We used the hosting company Slicehost to acquire machines for running our experiments.

Our server machine ran Apache 2.2.17 and OpenSSL 0.9.8p with our Snap Start prototype

(on Ubuntu10.04 with 256MB of RAM and uncapped outgoing bandwidth). On separate

client machines, we used Chromium, revision 61348 with our modifications to support

certificate prefetching and Snap Start with a prevalidated certificate. We generated TLS

1.0 handshakes with RSA key exchange, AES-256-CBC encryption, and SHA-1 message

authentication.

Comparing handshake latencies.

Our first experiments measure the latencies of three types of handshakes: 1.) a Snap Start

handshake with a prefetched and prevalidated certificate, 2.) a Snap Start handshake with

a cached but not validated certificate, and 3.) a normal full TLS handshake. We measured

handshake latency by modifying Chromium on a client machine (which had 1GB of RAM

and ran Ubuntu 10.04) to generate 500 requests one after the other and record the latency

for each request.
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Measuring the effects of certificate prefetching on server performance.

Our next experiments compare how different prefetching methods impact server perfor-

mance. We first measured the server’s latency and throughput when the server is not

handling any other requests. We performed these measurements for HTTP HEAD

requests, as well as for each of the three types of handshakes above (Snap Start with

prevalidated certificate, Snap Start with online certificate validation, and normal full TLS

handshake). We used the command-line tool httping [99] to generate HTTP HEAD

requests, a Chromium client to generate TLS Snap Start handshakes, and OpenSSL to

generate normal TLS handshakes. To measure throughput, we set up ten separate client

machines (each with 256MB of RAM and capped at 10Mbps outgoing bandwidth) making

continuous requests, and we logged each request on the server.

Some of our prefetching methods generate additional requests to the server stemming

from client certificate prefetch requests. We therefore measured the server’s latency and

throughput as the server was flooded with prefetching requests from clients. For each

prefetching method that affects the web server (i.e. HTTP, truncated handshakes, and

full dummy handshakes), we set up client machines to simulate prefetching traffic using

that method, with each prefetching client hitting the server with approximately twenty

requests per second. While these clients were prefetching certificates from the web server,

we again measured latency and throughput of HTTP HEAD requests and the three

handshakes. For example, to measure the impact of truncated handshake prefetching

on a web server handling HTTP HEAD requests, we set up ten clients to flood the

server with truncated TLS handshakes, and then measured the latency and throughput

of HTTP HEAD requests. We repeated the experiment with the number of prefetching

clients varying from one to ten.

Since prefetching from DNS or a CDN does not affect the web server, the control
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measurements (i.e. latency and throughput for requests while there is no prefetching

traffic) cover those prefetching methods. The three types of prefetching traffic for which

we measured server performance were HTTP GET requests, truncated handshakes, and

the näıve method of full dummy TLS handshakes.

We also measured the data transfer overhead that a server can expect to incur by en-

abling certificate prefetching and Snap Start. The overhead is a function of the fetchthrough

rate, the proportion of prefetches that lead to an actual page load. We measured data

transfer for a HTTP GET prefetch, a truncated handshake prefetch, a page load using

Snap Start, and a page load using a normal TLS handshake. We assume that with no

prefetching, every page load requires a normal TLS handshake, and with prefetching, ev-

ery page load uses a Snap Start handshake. Overhead is then calculated as np+as
at

, where

n is the number of prefetches, p is the bytes transferred for a prefetch, a is the number

of actual page loads, s is the bytes transferred for a page load using Snap Start, and t is

the bytes transferred for a page load using normal TLS.

4.3.2 Results

Table 4.3 shows the median and mean latency for each type of request. Snap Start with

a prevalidated certificate corresponds to the situation when the client has prefetched and

prevalidated the certificate and then performs a Snap Start handshake without needing to

validate the certificate. The row labeled Snap Start corresponds to the situation when the

client has cached the information necessary to perform a Snap Start handshake but must

validate the certificate. The data shows that the median latency for a Snap Start

handshake with a prevalidated certificate is four times faster than a normal

TLS handshake. Moreover, prevalidation speeds up basic Snap Start by close

to a factor of three.



CHAPTER 4. PREFETCHING AND PREVALIDATING CERTIFICATES 87

Median latency (ms) Mean latency (ms)
Snap Start, prevalidated certificate 30.45 35.58

Snap Start, no prevalidation 83.40 99.86
Normal TLS 121.82 124.11

Table 4.3: Latency measurements for a Snap Start handshake with prevalidated server
certificate (no verification during the handshake), a Snap Start handshake with online
certificate verification, and a normal (unabbreviated) TLS handshake.

Figure 4.2 shows how different prefetching methods affect the server’s latency and

throughput for HTTP HEAD requests, as we scale up the number of prefetching clients.

For example, with ten prefetching clients, median latency for HTTP HEAD requests

increased by 8.5% with HTTP GET prefetching, by 3.0% with truncated handshake

prefetching, and by 26.7% with full dummy handshake prefetching.

Figure 4.3 shows the data transfer overhead incurred by HTTP GET and truncated

handshake prefetching. (Prefetching from DNS or a CDN incurs no server overhead).

Truncated handshake prefetching is about 10% less data transfer per prefetch than HTTP

GET prefetching. The overhead varies widely depending on the fetchthrough rate, which

is determined by the browser’s prefetching strategy and how accurately the browser can

predict the user’s actions.

4.3.3 Analysis

Our experiments show that prefetching certificates allows for much faster handshakes

than Snap Start without prefetching. We measured median latency for a Snap Start

handshake with a prevalidated certificate to be 64% faster than a Snap Start handshake

with an unvalidated certificate. However, this figure is probably a conservative estimate

of the benefits of prevalidating, due to the unusually high speed of Slicehost’s network

connection. Our measurements of OCSP response times in the wild, shown in Figure 4.1,

show that prevalidating certificates will reduce latency even more in a real-world setting.
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(a) Median Latency (b) Median Throughput

Figure 4.2: Median latency and throughput for HTTP HEAD requests with different
types of prefetching traffic.

Figure 4.3: Data transfer overhead for certificate prefetching.
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In addition to enabling Snap Start handshakes when the browser has never seen a website

before, certificate prevalidation is useful when the browser has certificate information from

a previous handshake but does not have its OCSP status cached.

Our experiments also show that prefetching via any of our proposed prefetching meth-

ods has a less dramatic impact on server performance than doing full dummy handshakes.

Truncated handshakes prefetching appears to have the smallest effect on server perfor-

mance. However, in deciding between truncated handshake prefetching and HTTP GET

prefetching, clients and servers may want to consider factors such as client-side code com-

plexity, which we discuss below. Since prefetching via full dummy handshakes places a

heavier load on the server and also requires more computation for the client, we conclude

that full dummy handshakes are a poor choice for prefetching.

While Snap Start and prevalidating certificates reduce latency, throughput with no

cover traffic is about the same for all three types of handshakes. This is because the server

does about the same amount of computational work in each handshake, with the main

difference being how long the socket stays open. Certificate prefetching and Snap Start

are thus mechanisms for reducing client-side latency, not for improving server throughput.

As shown in Figure 4.3, for HTTP GET and truncated handshake prefetching, data

transfer overhead can be high when the fetchthrough rate is low. If browsers prefetch

aggressively, then DNS or CDN prefetching will avoid incurring this overhead for servers

with data transfer limits. If browsers prefetch conservatively, then data transfer overhead

is modest at less than 2x for fetchthrough rates higher than 0.5.



Chapter 5

Short-Lived Certificates

The work in this chapter was done in collaboration with Emin Topalovic, Brennan Saeta,

Collin Jackson, and Dan Boneh.

As mentioned in Section 1.4.1, the purpose of OCSP is for revoking a certificate prior

to its expiration date. This is because private keys corresponding to the certificate can

be stolen, the certificate could have been issued fraudulently (e.g., by a compromised

CA), or the certificate could have simply been reissued (e.g., due to a change of name

or association). Unfortunately, OCSP has been ineffective in the event of high-profile

security breaches of certificate authorities (i.e. Comodo [29] and DigiNotar [30]). With

fraudulently issued certificates exposed in the wild, browser vendors were forced to issue

software updates to blacklist bad certificates instead of relying on revocation checks.

In response, Google has announced plans to disable altogether OCSP in Chrome and

instead reuse its existing software update mechanism to maintain a list of revoked certifi-

cates on its clients. For space considerations, their global CRL is not exhaustive, and can

exclude the revocations that happen for purely administrative reasons. Network filtering

attacks that block updates are still possible, but would require constant blocking from

the time of revocation. Google’s decision is mainly due to the ineffectiveness of soft-fail

90
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revocation checks (treating OCSP query timeouts as valid), and also the massive costs

in performance (as we observed in Section 4.1) and user privacy [100]. Similarly, Mozilla

recently announced its plan [101] to implement a browser-maintained global CRL as part

of their certificate revocation checking process.

However, revocation by software update takes control of revocation out of the hands

of the CAs and puts it in the hands of software and hardware vendors who may have

less of an incentive to issue a software update every time a certificate is revoked. For in-

stance, multiple smartphone vendors have failed to issue software updates to block forged

certificates even several months after the CA security breaches. We argue that certificate

authorities should reassert control over the certificate revocation process by issuing certifi-

cates with a very short lifetime, for security and performance reasons. These certificates

complement browser-based revocation by allowing certificate authorities to revoke cer-

tificates without the cooperation of browser vendors, while eliminating the performance

penalty of OCSP.

5.1 Deficiencies of Existing Revocation Mechanisms

We begin by surveying the existing standards for removing trust from a valid certificate

before its expiration date, and discuss the deficiencies that have caused Google Chrome

to abandon them.

5.1.1 CRL

One solution to dealing with certificates that go bad is the certificate revocation list

(CRL) [20]. When a certificate goes bad, its identifying serial number is published to a

list, signed and timestamped by a CA. In order to trust a certificate, a user must not only

verify the signature and expiration date, but also ensure that the certificate is not listed
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in CRLs.

For CRLs to be effective, one assumes that (1) up-to-date lists are published frequently

by the CA, (2) the most recent list is available to the verifier, and (3) verification failures

are treated as fatal errors. These constraints on CRLs degrade their effectiveness as a

revocation mechanism:

• An earlier study [102] on real-world CRLs indicated that more than 30% of revo-

cations occur within the first two days after certificates are issued. For CAs, there

is a tradeoff between their CRL publishing frequency and operational costs. For

CAs that update CRL with longer intervals, there is a risk of not blocking recently

revoked certificates in time.

• Since CRLs themselves can grow to be megabytes in size, clients often employ

caching strategies, otherwise large transfers will be incurred every time a CRL is

downloaded. This introduces cache consistency issues where a client uses an out-of-

date CRL to determine revocation status.

• Browsers have historically been forgiving to revocation failures (a.k.a. “fail open”) so

as not to prevent access to popular web sites in case their CAs are unreachable [103].

In practice, they either ignore CRL by default, or do not show clear indications when

revocation fails [104]. Unfortunately, this lets a network attacker defeat revocation

by simply corrupting revocation requests between the user and the CA.

• It should also be noted that the location of the CRL (indicated by the CRL dis-

tribution point extension) is a non-critical component of a certificate description,

according to RFC5280. This means that for certificates without this extension, it

is up to to the verifier to determine the CRL distribution point itself. If it cannot,

CRLs may be ignored [105].
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5.1.2 OCSP

The Online Certificate Status Protocol (OCSP), an alternative to CRLs proposed in RFC

2560 [22], allows client software to obtain current information about a certificate’s validity

on a certificate-by-certificate basis. When verifying a certificate, a client sends an OCSP

request to an OCSP responder, which responds whether the certificate is valid or not.

Typically, clients are instructed to cache the OCSP response for a few days [23]. OCSP

responders themselves are updated by CAs as to the status of certificates they handle.

In theory, it is possible for CAs to issue OCSP responses with short validity peri-

ods (since the response size is smaller than a CRL), however there are many real-world

constrains that make this approach infeasible:

• OCSP validation increases client side latency because verifying a certificate is a

blocking operation, requiring a round trip to the OCSP responder to retrieve the

revocation status (if no valid response found in cache). In Section 4.1, our results in-

dicate that 91.7% of OCSP lookups are costly, taking more than 100ms to complete,

thereby delaying HTTPS session setup.

• OCSP may provide real-time responses to revocation queries, however it is un-

clear whether the responses actually contain updated revocation information. Some

OCSP responders may rely on cached CRLs on their backend. It was observed that

DigiNotar’s OCSP responder was returning good responses well after they were

attacked [106].

• Similar to CRLs, there are also multiple ways that an OCSP validation can be

defeated, including traffic filtering or forging a bogus response by a network at-

tacker [107]. Most importantly, revocation checks in browsers fail open. When they

cannot verify a certificate through OCSP, most browser do not alert the user or
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change their UI, some do not even check the revocation status at all [104]. We

note that failing open is necessary since there are legitimate situations in which the

browser cannot reach the OCSP responder. For example, at an airport, a traveler

might be asked to pay for Internet service before connecting to the Internet. In this

case of these captive portals, the browser cannot validate the gateway’s certificate

using OCSP and must implicitly trust the provided certificate so that the user can

enter her payment information and connect to the Internet.

• OCSP also introduces a privacy risk: OCSP responders know which certificates are

being verified by end users and thereby responders can, in principle, track which

sites the user is visiting.

5.2 An Old Proposal Revisited

We propose to abandon the existing revocation mechanisms in favor of an old idea [108,

109] — short-lived certificates — that puts revocation control back in the hands of the

CAs. A short-lived certificate is identical to a regular certificate, except that the validity

period is a short span of time.1 Such certificates expire shortly, and most importantly,

“fail closed” after expiration on clients without the need for a revocation mechanism.

In our proposal, when a web site purchases a year-long certificate, the CA’s response

is a URL that can be used to download on-demand short-lived certificates. The URL

remains active for the year, but issues certificates that are valid for only a few days.

Every day a server-side element fetches a new certificate that is active for the next few

days. If this fetch fails, the web site is not harmed since the certificate obtained the

previous day is active for a few more days giving the administrator and the CA ample

1We suggest a certificate lifetime as short as four days, matching the average length of time that an
OCSP response is cached [23]. We encourage CAs to configure an even shorter validity period to reduce
the time gap that a stolen revoked certificate can possibly be used.
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time to fix the problem. In this way the burden of validating certificates is taken off the

critical path of HTTPS connection establishment, and instead is handled offline by the

web site. We emphasize that short-lived certificates do not change the communication

pattern between clients and web servers. Moreover, since clients typically fail closed when

faced with an expired certificate, this approach is far more robust that the existing OCSP

and CRL based approaches.

Although it is conceptually simple, many issues need to be addressed for this approach

to work. First, we hope to use short-lived intermediate certificates, but this requires some

additional steps at the CA. Second, we need to ensure that installing a new certificate on

a web server does not force a web server restart. Third, for web sites with many servers,

we need an architecture to ensure that only one request from the site is issued to the CA

per day (as opposed to one request per server). We describe a certificate subscription

system that automatically fetches and installs short-lived certificates periodically makes

it practical for server administrators to deploy (and not need to manually install their

certificates). Finally, a small optional change to the client can provide additional defense-

in-depth against attacks on the CA.

5.2.1 Design

In what follows we assume a server provides a particular service such as a web-based

email over HTTPS. A client is a user of the service, which will validate whether the

server provided certificate is signed by a trusted source to determine the authenticity

of the server. Both the client and server trust an intermediate party, known as the

certificate authority (CA), who certifies the identity of the server. In practice, clients are

pre-installed with the public keys of the trusted CAs, thus, clients can verify the trusted

CA’s signatures. We describe the modifications we make on the three components in this
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scenario: the certificate authority, the server, and the client.

Certificate Authority The role of a certificate authority is to sign the certificates for

subscribing servers. The certificate authority has two modes of operations: on-demand

and pre-signed. What differentiates the two is how the certificates are generated.

• On-demand mode. When using the on-demand approach, the CA keeps its private

key online, and signs new certificates when requested. In on-demand mode, the

online CA keeps a template certificate — a certificate with static information, such

as the common name and public-key already populated — which is loaded when

the web server requests a new short-lived certificate. The validity period of the

certificate is altered such that it begins at the time of the request and ends the

configured amount of time in the future, typically within a few days. The certificate

is signed using the CA’s private key and sent back to the web site.

In on-demand mode the hardware boxes used at the CA to manage the CA’s private

key can be configured so that they will never issue a certificate with a validity period

of more than a few days beyond the present date. Consequently, a single compromise

of the CA will only expose certificates that will expire shortly.

• Pre-signed mode. With the pre-signed approach, the CA’s private key is kept offline

and certificates are signed in batches. When a server requests a certificate, the CA

looks through its store of pre-signed certificates to find the appropriate one, in which

the validity period begins before the request time and ends at least a day after the

request time. The extra overlap allows the requester to not have to worry about

automatically re-issuing the request were it to be issued closer to its expiration date.

Similar to previous two-level digital signature schemes [110] (using an offline CA to
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pre-issue certificates), this reduces the computation of the online CAs. It also allows

that CA’s private key to remain offline, as is often the case for root CAs.

In either case, should the server request its certificate be revoked, the certificates,

either the template or pre-signed, are removed from the CA store. Subsequent requests

will fail.

Server Plug-in The short-lived certificates themselves are usable by any server which

supports standard X.509 certificates. What is required is a side-loaded program (or plug-

in) that manages the server’s certificates by requesting fresh certificates from the certifi-

cate authority as the expiration time of the current certificate approaches. Our server-side

program is set-up to automatically execute after a certain interval of time. It is recom-

mended that the interval is set to at least two days before the expiration date to ensure

new certificates are installed in a timely fashion.

When the server certificate-downloading program wakes up, it checks the expiration

date of the current installed certificates and if any are approaching expiration, the program

issues an HTTP GET request to the CA for a new certificate. The server-side program

checks that the only field that changed in the new certificate is the validity period (and

in particular, the public-key did not change). If so, it stores the new certificate in the

certificate store and alerts the server to load the new certificate. In Section 5.2.2 we

explain how to load a new certificate in popular web server without restarting the server.

If the retrieved certificate is corrupt, it is ignored and the site admin is alerted.

Client-Side Pinning In current popular browsers certificate validation fails for expired

certificates. Therefore, no client-side modifications are needed to implement our short-

lived proposal. Chrome’s CRL approach complements this mechanism well in case there
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Figure 5.1: Expired certificate warning in Google Chrome When encountering
expired certificates, the browser blocks the page, removes the lock icon from the address
bar, and presents a security warning dialog to the user.

is a need to quickly revoke a compromised certificate (including root and intermediate

certificates).

In practice, when encountering expired certificates, the browser blocks the page, re-

moves the lock icon from the address bar, and presents a security warning dialog to the

user (see Figure 5.1). We note that previous studies have shown that users may still click

through the warnings [47] and therefore a strict hard-fail approach is suggested for better

security, as implemented for HSTS [69] websites.

While no client-side modifications are required, the short-lived proposal can be strength-

ened with a small client-side extension. In particular, we propose to add a new X509 cer-

tificate extension to indicate that the certificate is a short-lived certificate. When a client

sees such a short-lived certificate, it records this fact and blocks future connections to the

server if the server presents a non-short-lived certificate. We call this client-side pinning

for short-lived certificates, similar in a way to existing certificate authority pinning in
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browsers [74, 111]. In addition to just pinning the CA used by a site, we are pinning

the status of whether a site uses short-lived certificates. Client-side pinning ensures that

the number of short-lived enabled certificates (including intermediate certificates) in a

certificate chain should never decrease. This optional behavior should still allow short-

lived certificates to be incrementally adopted on intermediate CAs. Client-side pinning

prevents two attacks:

1. Suppose an attacker succeeds in compromising a CA once without being detected.

Without short-lived pinning on the client, the attacker could simply request long-

lived certificates from the CA’s hardware and these certificates let the attacker

man-in-the-middle all web sites that use this CA. With short-lived pinning, the

attacker must request short-lived certificates from the CA’s hardware, but by de-

sign the hardware will only issue short-lived certificates that expire in a few days.

Therefore, a one-time compromise of the CA will not help the attacker. The attacker

must repeatedly compromise the CA thereby increasing the chance of detection and

revocation.

2. Consider a web site that currently uses long-lived certificates. If the server’s se-

cret key is stolen the site may ask the CA to revoke the long-lived certificate and

then switch to using short-lived certificates. But an attacker can block revocation

messages sent to clients and then use the stolen long-lived certificate to man-in-the-

middle the web site. Clients would have no knowledge that revocation took place

and will accept the revoked long-lived certificate. With short-lived pinning, if the

client connects to the legitimate site after it switched to short-lived certificates, the

long-lived certificate will no longer be accepted by the client.

If a website wishes to stop using short-lived certificates, the X.509 extension can
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provide an option to disable client-side pinning.

Figure 5.2: Short-Lived Certificates and Chrome’s CRL 1. Certificate authori-
ties pre-sign batches of short-lived certificates. 2. A plugin on the SSL website period-
ically fetches fresh short-lived certificates from the CA and loads it onto the server. 3.
Google generates a list of revoked certificates, and automatically updates the global CRL
to browsers. 4. When the user visits the SSL website, the certificate is validated against
Chrome’s CRL and also fails on expiration.

5.2.2 Implementation

We developed a prototype to enable and automatically update short-lived certificates for

Apache web servers. We also implemented client-side pinning in Chromium web browser.

Certificate Authority Our certificate authority was implemented using Java and is

served over Apache Tomcat as a web application. The web server issues an HTTP GET

request to the CA server specifying the common name for the certificate it wishes to

retrieve, as well as a unique certificate identifier. This identifier allows a web server to
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have multiple certificates under the same common name stored by its one CA. These

identifiers are chosen by the owners of the servers when they register with the CA for

short-lived certificates. They allow a server to have multiple certificates under a common

name, say if they wish to use a different private/public key pair or want a certificate that

is a wild card certificate and one that is domain specific.

In either the pre-signed or on-demand mode, the CA’s servlet looks for an appropriate

certificate on the filesystem. In on-demand mode, the validity period of the matching

template certificate is updated and signed with the CA’s private key. The private key is

stored encrypted on the CA’s server, and is decrypted and brought into memory at start-

up. The signing and general certificate handling is done using the IAIK cryptography

libraries [112]. The pre-signed certificates are signed offline using a different key and are

transferred to the servers manually. The batch can be set by the CA but will present a

trade-off between security and ease-of-use. Pre-signing larger batches means less overhead

of signing and transferring the certificates, but leaves more signed certificates on an online

server and thus at the risk of being stolen. Each pre-signed and and on-demand certificate

is made valid for four days to match the length of time for which an OCSP response is

cached [23].

Server Plug-in We implemented our server-side program in Java targeting Apache

web servers. The program is set as a cron job executing every day. When the program

runs, it checks to make sure the certificate is close to expiration. If true, it issues a GET

request to our CA for either a pre-signed or on-demand certificate. Once the certificate

is obtained it is stored to the filesystem in the standard PEM format.

Our Apache SSL configuration files are set such that the file locations of the certificates

are symbolic links. When the new certificate is stored on the filesystem, all our program
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has to do is re-point the symbolic link to the new certificate and optionally clean up

old, expired ones. After this, the server certificate-downloading program issues a graceful

restart command to Apache. This ensures the web server restarts and loads the new

certificates without disrupting any existing connections.2 Although we prototyped on the

Apache web server, our proposal is applicable to other popular web servers such as Nginx

and Jetty, without causing server downtime. Nginx supports graceful restart, similar to

Apache, and Jetty supports reloading the Java trust store on-the-fly [113].

Client-Side Pinning We implemented a prototype of client-side pinning for short-

lived certificate in Chromium (using revision 61348). Since Chromium utilizes the system

cryptography libraries on each platform [114] to handle certificate verification, we imple-

mented our code as a platform-independent function in the browser above the cryptogra-

phy libraries, instead of modifying a specific library such as NSS. We reused the existing

transport security state code in Chromium (for HSTS and public key pinning) to store

our short-lived certificate pins persistently.

5.2.3 Deployment Incentives

The deployment incentives of web servers and CAs for short-lived certificates may be less

obvious, which might discourage adoption. We discuss below the deployment costs of

short-lived certificates from the perspectives of web servers and CAs, and explain why

CAs and server operators are incentivized to deploy short-lived certificates.

• Web server. From the server’s point of view, manually updating short-lived cer-

tificates on a server is a tedious task, especially since they need to perform this

rather frequently (once every day or every few hours). Fortunately, the method

2It is reasonable for a large site using Apache to use short-lived certificates. Apache can restart
gracefully with no noticeable impact to end users as our benchmarking has shown.
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we proposed (in Section 5.2.1) is an automatic certificate update system where the

server can fetch new certificates from their CAs during their subscription period.

We implemented scripts that automatically fetches new certificates from the CA,

and performs the installation of downloaded certificates on-the-fly on an Apache

web server. Our proposed system removes the burden of keeping server certificates

up-to-date from human operators, to software (after an initial setup process by

human), therefore it is no harder to deploy than traditional long-lived certificates.

• CAs. From a CA’s point of view, supporting short-lived certificates introduces the

extra costs of re-issuing certificates more frequently and making fresh certificates

available to the subscribing web servers. This is necessary because web servers will

automatically download fresh short-lived certificates from CAs every day (or every

few hours). However, it is important to note that getting web servers to deploy

short-lived certificates actually reduces the amount of OCSP request traffic being

sent from web clients to the CA’s OCSP responder. Since there are way more

web clients than web servers on the Internet, it is safe to assume that the amount

of OCSP requests coming from web clients (that could be saved) easily outweighs

the amount of certificate downloads from the subscribing web servers. Therefore,

deploying short-lived certificates actually reduces the resource requirements on the

CAs’ servers, and actually provides cost savings in bandwidth and equipments for

CA operators.

Last but not least, deploying short-lived certificates offers better performance and

security to web clients and servers: (1) in-band certificate revocation checks with no

round-trip latencies result in faster web pages, and (2) in-band revocation checks are

immune to network attackers that block or corrupt OCSP responses. As a result, CAs,
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Table 5.1: Comparison of Certificate Revocation Approaches

Chrome’s CRL Hard-Fail OCSP Short-Lived Certificates Chrome’s CRL +
Short-Lived Certificates

Untrust Rogue Root CAs 3 3

Revoke Misissued Certificates 3 3 3 3

Revoke Benign Certificates 3 3 3

Support Captive Portals 3 3 3

Avoid Page Load Delay 3 3 3

Avoid User Tracking 3 3 3

Avoid Single Point of Failure 3

Support Legacy Clients 3

web servers, and browser vendors can proudly offer better performance and security to

their users by supporting short-lived certificates.

5.3 Analysis of Post-OCSP World

In Section 5.1, we discussed the ineffectiveness of the existing soft-fail OCSP and CRL

mechanisms, which have paved the way for recent proposals such as Chrome’s browser-

based CRLs. In this section, we discuss the benefits and shortcomings of various revoca-

tion approaches in a post-OCSP world (summarized in Table 5.1), including (1) Chrome’s

CRL, (2) hard-fail OCSP, (3) short-lived certificates, and (4) hybrid approach of short-

lived certificates with Chrome’s CRL.

5.3.1 Chrome’s CRL

Google has announced plans to disable OCSP checks completely and reuse its existing

software update mechanism to maintain a list of revoked certificates on its clients.

Advantages

In the case of certificate misissuances during CA incidents, Google could push out new

CRLs that will block the fraudulently issued certificates on the clients in less than a daily

time frame. Due to using software updates, this approach even has the ability to remove
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the misbehaving root certificates. Browser-based CRLs are updated periodically and not

fetched at the time connecting a site, thus there is no additional latency during page

load, nor privacy concerns of tracking the user’s browsing history. Further, network filter-

ing attacks become more difficult, an attacker would have to consistently block software

updates from the time of revocation, instead of only at the time of visit.

Disadvantages

Due to space considerations of maintaining a global CRL, Google will not support a vast

amount of revocations that are due to administrative reasons. Should OCSP be disabled,

certificate authorities lose control over revocation, therefore unable to revoke certificates

for billing, re-issuance, or other benign reasons. Google has become a single point of

failure for certificate revocation. Another major disadvantage of this approach is that

legacy clients are currently not supported, such as mobile devices and other browsers.

Google may want to provide their global CRLs as a public service for other browsers and

applications, in a way similar to their Safe Browsing API [115].

5.3.2 Hard-Fail OCSP

In attempt to fix the ineffectiveness of OCSP under existing CA infrastructures, some

security researchers as well as CAs have suggested clients enforce hard-fail OCSP. Some

browsers do allow users to opt-in to hard-fail for revocation checks, but this must be

turned on by default to be effective.

Advantages

Unarguably, the security of a hard-fail OCSP is better than existing soft-fail mechanisms.

Unlike new browser-based CRL proposals, this approach supports the existing revocation

infrastructure managed by CAs.
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Disadvantages

Unfortunately, there are legitimate reasons why browsers refuse to simply turn on hard-fail

OCSP. For example, users may need to log in to captive portals of WiFi hotspots where

the login page is protected by SSL. Often, the HTTP traffic is blocked, including OCSP,

and will cause certificate validation to timeout. If hard-fail OCSP was implemented, users

will not be able to connect to many WiFi hotspots, even though they are probably not

under attack.

Also, this approach shares many disadvantages of existing OCSP approach, including

the ability for third party to track the user’s browsing history. Further, clients may suffer

significant connection latency due to OCSP queries, which even worse may discourage

sites on adopting SSL. Whenever an OCSP responder goes down, all sites that use their

certificates will go down as well.

In the case where a Root CA has been completely compromised, OCSP does not pro-

vide any protection since the attacker could have easily generated a valid OCSP response

with a far expiration date. Clients would need software updates to untrust the bad root

certificate.

5.3.3 Short-Lived Certificates

We described the approach of using short-lived certificates in Chapter 5. In short, to

revoke a certificate, the CA simply stops reissuing new certificates, as any old certificates

either must have expired, or would expire shortly.

Advantages

By default, certificate expiration is always strictly validated on clients. All major browsers

check for the validity period of certificates and present alerts to users when encounter-
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ing expired certificates. No modifications on clients are required, thus will work on all

platforms and devices without updates.

In the event of a key compromise or fraudulent issuance of site certificates, with short-

lived certificates, the CA simply stops renewing the certificate for revocation. The window

of vulnerability will be bounded by the short validity period, which should be no more

than a few days. We note that short-lived certificates can potentially help if supposedly a

large CA (e.g., VeriSign) is hacked — the too big to fail problem. In that case, there will

be a need to revoke the stolen certificates. Short-lived certificates can make that easier.

Unlike OCSP, user’s browsing habits are not reported to any third parties when short-

lived certificates are used. Further, this approach does not require additional round-trips

to a SSL connection setup, as browsers do not need to verify the certificate status with

an OCSP responder.

Since short-lived certificates are regular certificates, they can be chained in exactly

the same manner as the existing deployment of X.509 certificates. This allows websites,

and even intermediate certificate authorities, to incrementally deploy and take advantage

of short-lived certificates, without a large migration, or infrastructure change.

Disadvantages

Although short-lived certificates cannot solve the problem of a root CA compromise (nei-

ther does hard-fail OCSP), it does improve the security of intermediate certificates that

are short-lived. In on-demand mode, the fact that the certificate authorities are online

increases the risk of the CA’s key being stolen and fraud certificates being generated. This

is less of an issue with the pre-signed mode where certificates are signed by an offline CA

in batches, allowing the key to be kept safe and isolated from the online servers. However,

signing in batches implies that a CA break-in will provide the attacker with a larger pool
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of pre-signed certificates and thus a longer time during which they can masquerade as

the certificate owners. Fortunately, this only hinders security if the attackers have also

compromised a client’s private key.

One possible issue that could be raised is the fact that if a CA falls under DDoS

attacks, servers can not get updated certificates and are thus forced into service outage

as soon as their certificates expire. This requires that the attacker is able to take down

the CA consistently for at least a few days. Fortunately, there are many mitigations. One

approach for CAs is to filter traffic based on IP, only allowing well-known customer IPs

through. If using pre-signed mode, the distribution of certificates can further be handled

by third-party distributors that specialize in handling DDoS-level traffic.

We note that deploying short-lived certificates might cause errors on clients whose

clocks are badly out of sync (e.g., off by a week). It is recommended that clients should

sync their clocks periodically, which is critical for preventing replay attacks.

5.3.4 Hybrid approach

Lastly, we consider a hybrid approach of using short-lived certificates in cooperation

with Chrome’s CRL. First of all, by issuing short-lived certificates, CAs immediately

regain control of certificate revocation that was disabled by Chrome. Once CAs start

to issue short-lived certificates for sites (as well as intermediate CAs), these sites will

benefit from the improved security. In the event of keys being stolen or certificates being

misissued, short-lived certificates ensures a shorter window of vulnerability by warnings

on expiration.

In addition, Chrome’s CRL complements nicely with short-lived certificates. With

short-lived certificates alone, we mentioned that users may still be vulnerable in the worst

case, when a root certificate is deemed untrustworthy. Now that browser-based CRLs
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provide protection against CA incidents, the combination of these two approaches allows

a full spectrum of revocation (on supporting browsers). Browser vendors will be able

to revoke fraudulent certificates and rogue CAs, while CAs may control administrative

revocations for benign certificates.

This hybrid approach does not have the client side performance or privacy issues

caused by OCSP, and does not block users behind captive portals. In contrast, we note

that using hard-fail OCSP along with Chrome’s CRL would still suffer the compatibility

issues with captive portals, as well as page load delay and privacy issues. Given Chrome’s

CRL in place, we suggest that adopting short-lived certificates gives the maximum security

without the obvious shortcomings of OCSP.

5.4 Related Work

5.4.1 OCSP Stapling

An update to OCSP is OCSP stapling, where the web server itself requests OCSP vali-

dation which it passes on the response to inquiring clients. Stapling removes the latency

involved with OCSP validation because the client does not need an additional round trip

to communicate with the OCSP responder to check the certificate’s validity. This also

removes the privacy concern of OCSP because the responder does not have access to

knowledge about a web site’s visitors. Unfortunately this is not widely implemented, only

3% of servers support OCSP stapling [116]. Also, current implementations do not support

stapling multiple OCSP responses for the chained intermediate certificates [103]. Further,

we note that users are still prone to attacks if clients do not implement hard-fail OCSP

stapling (and pin the status of whether a site uses OCSP stapling). Proposals [117, 118]

to let servers opt-in to hard-fail on clients if OCSP response is not stapled are still work in

progress. In contrast, short-lived certificates automatically fail closed on existing clients
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without modifications.



Chapter 6

Forward Secrecy Performance

The work in this chapter was done in collaboration with Shrikant Adhikarla, Collin Jack-

son, and Dan Boneh.

In a typical TLS setup, the client sends a random nonce (the pre-master secret) to

the server, that is used to derive the shared session key used for encryption. Since the

pre-master secret is encrypted with the server’s public key, only the holder of the server’s

private key should be able to derive the session key. Therefore, an eavesdropper cannot

simply decrypt the captured TLS traffic.

However, the confidentiality of the server’s private key is not always as robust as

one may wish. An attacker could possibly steal private keys from server administrators

via social engineering, recover expired private keys from discarded storage devices (that

might be less protected), or perform cryptanalysis on the encrypted traffic with future

super computers. In fact, the Heartbleed OpenSSL bug [119] makes a point that private

keys can be silently stolen from unpatched servers. A leaked document [120] even suggests

that some governments have surveillance programs to capture backbone communications.

If a government stores all of the captured traffic and later requests the server’s private

key, then past encrypted communications may be decrypted.

111
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An important property in this context is forward secrecy, which ensures that short-

term session keys cannot be recovered from the long-term secret key. Especially in the

situation where Internet surveillance is a concern, forward secrecy lets enterprises argue

that eavesdroppers simply cannot reveal secret data of past communications. Currently,

websites can enable forward secrecy using TLS’s ephemeral Diffie-Hellman (DHE) or

ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key exchange methods. With these

methods, the server’s long-term secret key is used to sign a short-lived Diffie-Hellman key

exchange message. The resulting Diffie-Hellman secret is used as the session’s pre-master

secret. Once the pre-master secret is discarded after the session, the session key cannot

be reconstructed even if the server’s private key is given.

Traditionally, the argument against deploying forward secrecy is that forward-secure

cipher suites incur a significant performance cost. In our work, we evaluated the perfor-

mance of TLS cipher suites and found that ECDHE-based forward secrecy is not much

slower than RSA-based setups with no forward secrecy. The reason is that with the RSA

key exchange, the server must perform an expensive RSA decryption on every key ex-

change. With the ECDHE key exchange, the server can RSA-sign its ECDH parameters

once and re-use that signature across several connections. The server-side online crypto-

graphic operation is then just one elliptic curve multiplication which can be faster than a

single RSA decryption (of equivalent key strength). Furthermore, ECDHE outperforms

DHE since the parameter sizes are significantly smaller while providing the same level of

security. Finally, the ECDHE key exchange can even be faster than RSA key exchange if

the ECDH parameters are signed with ECDSA.

We evaluated the performance costs of TLS forward secrecy on the server side and

the client side. First, we conducted a controlled experiment where we load tested our

TLS servers on an internal network. Second, we ran an Ad experiment to measure the
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client-side TLS latencies on real-world clients.

6.1 Controlled Experiment - Server throughput

6.1.1 TLS server setup

We setup our TLS servers using Apache 2.4.4 compiled with OpenSSL 1.0.1e (with 64-

bit elliptic curve optimizations). We applied Abalea’s mod ssl patch [121] to enable

2048-bit Diffie-Hellman parameters.1 We used Rackspace virtual private servers running

Debian Linux 2.6.32-5 on AMD Opteron 4170 HE 2.1 GHz CPU, 512 MB RAM and 40

Mbps network bandwidth. We disabled TLS session resumption and HTTP persistent

connections.

We evaluated five representative TLS cipher suites, including (1) RSA-RSA: RSA-

2048 key exchange with RSA-2048 signatures, (2) DHE-RSA: DHE-2048 key exchange

with RSA-2048 signatures, (3) ECDHE-RSA: ECDHE-256 key exchange with RSA-2048

signatures, (4) ECDHE-ECDSA: ECDHE-256 key exchange with ECDSA-256 signatures,

and (5) DHE-DSA: DHE-2048 key exchange with DSA-2048 signatures. All of the cipher

suites in our experiments were uniformly configured to use 128-bit AES-CBC encryption

with SHA-1 HMAC. The security strengths of these cipher suites were not necessarily

equivalent since we used commercial certificate authorities which do not issue certificates

with arbitrary key strengths. Note that self-signed certificates would trigger SSL certifi-

cate warnings on real-world clients, thus does not suffice for our ad experiments. Table 6.1

describes the 3 production TLS certificate chains used in our evaluation, listing the sig-

nature algorithms, signature hash algorithms and chain sizes. We point out that there

is a roughly one kilobyte size difference between the RSA and ECDSA certificate chains.

This is because there are two certificates (leaf and intermediate) transmitted per chain,

1Abalea’s patch is obsolete as of Apache 2.4.7.
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Leaf certificate Intermediate certificate Root certificate (not transmitted) Chain size (bytes)

1. RSA-2048, SHA-256 RSA-2048, SHA-1 RSA-2048, SHA-1 3,119
2. DSA-2048, SHA-256 DSA-2048, SHA-256 DSA-2048, SHA-256 3,343
3. ECDSA-256, SHA-256 ECDSA-256, SHA-384 ECDSA-384, SHA-384 2,104

Table 6.1: TLS certificate chains for evaluation issued by Symantec CA

and each ECDSA-256 public key along with a signature is roughly 500 bytes smaller than

a RSA-2048 public key along with a signature.

We setup three different web pages of varying complexity for our experiments.

• Simple page - a copy of one of our author’s home page. The page was static and

hosted on a single domain.

• Complex page - a copy of Amazon.com’s landing page. We hosted the page and all

sub-resources (e.g., images, stylesheets and scripts) on a single domain.

• Multi-domain page - a copy of Salon.com’s landing page. We setup 10 additional

sub-domains on our site to host the sub-resources.

6.1.2 Methodology

We measured the average server throughput of each TLS server setup by generating large

amounts of synthetic TLS traffic towards the server, from two client machines over a 40

Mbps private network. We used the ApacheBench tool to send HTTPS requests continu-

ously, and concurrently (1,000 requests at the same time), from each client machine. We

monitored the server throughput (number of requests per second) and took the average

value over 5 minutes. For sanity check, we tested each TLS server configuration using

GET requests and HEAD requests, separately.
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Figure 6.1: Server throughput of different configurations under synthetic traffic

6.1.3 Results

Figure 6.1 shows the average number of requests per second that the web server can serve

when fully loaded under each server configuration. We compare the three cipher suites

(RSA-RSA, DHE-RSA and ECDHE-RSA) that use the same signature algorithm (RSA-

2048) with different key exchanges (RSA, DHE and ECDHE). First of all, RSA-RSA

(with no forward secrecy) was clearly the fastest of the three regardless of the type of web

page, peaking at 265.4 GET requests per second when serving simple pages.

Forward secrecy with DHE is costly. DHE-RSA performed the slowest of all, av-

eraging only 45.7 requests per second in the best case. This should be due to the extra

computation required for generating the ephemeral DH key (and RSA-signing it) for each

ServerKeyExchange message.

Forward secrecy with ECDHE is basically free. Interestingly, the performance cost

of ECDHE-RSA (that averaged 237 requests per second when serving simple pages) is

dramatically cheaper than DHE, and even almost free compared to RSA (with no forward

secrecy). The reason is that ECDHE requires significantly smaller parameters than DHE
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to achieve equivalent security strengths. Further, with the RSA key exchange, the server

must perform an expensive RSA decryption on every key exchange. With the ECDHE key

exchange, the server can RSA-sign its ECDH parameters once and re-use that signature

across several connections.

Forward secrecy with ECDHE-ECDSA actually improves performance. The

performance of ECDHE-ECDSA is the fastest (peaking at 405 requests per second when

serving simple pages). ECDHE-ECDSA is not only faster than ECDHE-RSA, but even

faster than RSA-RSA, which does not provide forward secrecy. Moreover, ECDSA-256

has a higher security strength than RSA-2048, thus one could expect a larger difference

if comparing equivalent strengths.

6.2 Ad-based experiment - Client latencies

6.2.1 Methodology

We conducted an ad-based experiment to measure TLS latencies of different cipher suites

on real-world clients. Our experiment setup consisted of two machines (with separate IP

addresses and domain names), one which runs the TLS servers to be tested (as described

in Section 6.1.1), and the other which hosts our advertisement banner page (mainly a

blank image and JavaScript code). We purchased ad impressions (see Section 6.2.2) to

recruit real-world clients to view our banner. When our ad banner is rendered on each

client, our code will create TLS connections to our TLS servers by loading each HTTPS

test link in an IFRAME. For each HTTPS test, our script collected the following two

measurements using the HTML5 Navigation Timing API:

• TLS setup time: The amount of time used to establish a SSL/TLS connection,

including the TLS handshake time and the certificate validation time on the client.
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Unfortunately, this measurement is currently only supported in Chrome.

• TCP + TLS setup time: The amount of time used to establish the transport connec-

tion, which includes the TCP handshake and TLS handshake. This measurement

is currently supported in three major browsers (including Chrome 6+, Firefox 7+

and IE 9+).

Upon completion, the timing measurements were sent back to our log server, where the

client’s IP address (and other personally identifiable information) were discarded. Our ad

experiment did not require any user involvement. If the user navigated away (e.g., closed

the tab) during the experiment, or if the TLS connection failed, our servers received

partial results.

We note that modern web clients cache the validity statuses of certificates for perfor-

mance reasons, thus our measurement results may be biased by the testing order (subse-

quent tests that share the same RSA certificate may load faster). As a workaround, two

“cold” tests were added to warm the client-side caches, labeled as RSA-RSA COLD and

ECDHE-ECDSA COLD, such that all of the subsequent tests would be equally evaluated

under a warmed cache.

6.2.2 Results

We purchased 273,533 advertisement impressions from 23 January 2014 to 29 January

2014. We spent $167.75 in total, including $122.23 on a run-of-network campaign (195,214

impressions), and $45.52 targeted on mobile devices (78,319 impressions). Not all ad

impressions converted to valid measurements. We discarded impressions with clients that

do not support HTML5 Navigation Timing, and clients that are not viewing our ad for

the first time. Also, users may leave the web page before completion of tests. We indicate

the number of unique clients that successfully performed each test in Figures 6.2 and 6.3.
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Figure 6.2: Comparison of TLS setup times in Chrome browsers on Windows, OS X
and Android. The box plots show the 10th, 25th, 50th, 75th and 90th percentiles of
measured TLS setup times for each cipher suite. The corresponding bar charts show the
number of unique clients that successfully completed each test.

TLS setup times. Figures 6.2a-c show the TLS setup times of different cipher suites in

Chrome browsers on Windows, OS X and Android. When comparing client-side latencies,

smaller values mean better performance. Upon first glance at Figure 6.2a, the medians

of ECDHE-ECDSA COLD and RSA-RSA COLD are both substantially higher than the

other configurations. Unsurprisingly, the two “cold” connections result in longer latencies

possibly due to performing Online Certificate Status Protocol (OCSP) lookups to check

validity, while the subsequent tests may enjoy a warm OCSP cache. The number of unique

clients that completed ECDHE-ECDSA COLD appeared to be the highest because it was

always tested first (and many users do not stay on the page long enough for other tests

to complete).

While the performances of DHE-RSA, ECDHE-RSA, RSA-RSA and ECDHE-ECDSA

were similar, we noticed that the ECDHE-ECDSA setup consistently performed the fastest

of all setups, resulting in a median of 366 milliseconds (and a 90th percentile of 1088 mil-
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Figure 6.3: Comparison of TCP + TLS setup times in Chrome, Firefox and Internet
Explorer browsers (on all platforms).

liseconds). This suggests that deploying forward secrecy actually improves performance

on the client over RSA-based setups with no forward secrecy. Encouragingly, we observe

very similar trends on OS X (in Figure 6.2b) and Android (in Figure 6.2c), where the me-

dians of TLS setup times for ECDHE-ECDSA were consistently the smallest. The results

for Android show that mobile devices (typically with less computational power) might

also benefit from ECC-based forward secrecy. On the other hand, DHE-RSA performed

the slowest on Android mobile with a median of 820 milliseconds.

TCP + TLS setup times. We compare the TCP + TLS setup times of different

cipher suites in Figures 6.3a-c for Chrome, Firefox and Internet Explorer browsers on all

platforms. The coarser TCP + TLS setup time includes possibly more noise incurred by

the extra round-trips of the TCP handshake. In Figure 6.3c, we do not have any results

for DHE-RSA since it was not supported in Internet Explorer.

As a sanity check, the TCP + TLS results for Chrome in Figure 6.3a were basically

in line with the TLS results in Figure 6.2a, where the ECDHE-ECDSA was the fastest of
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all cipher suites. For Firefox, we did not observe significant differences between the client

latency medians for each cipher suite in Figure 6.3b. We did not find any cipher suite

that performed particularly slower. Unlike Chrome (where ECDHE-ECDSA COLD took

roughly 4 seconds longer than other cipher suites in median), the performance of ECDHE-

ECDSA COLD in Firefox (a median of only 389 milliseconds) was not significantly slower

than ECDHE-ECDSA. Upon further investigation, we believe that “cold” connections

in Firefox were often faster than other browsers because Firefox maintains its own root

CA store (rather than rely on the operating system’s root CA store). The underlying

cause is that not all legitimate root CA certificates are pre-installed on the system’s CA

root store, in particular on Windows (we verified that Symantec’s ECDSA root certificate

is not pre-installed on Windows 8 or Windows Server 2012). When encountering an

unseen root CA certificate (in non-Firefox browser), the system attempts to fetch the

root certificate over-the-air. As a result, the ECDHE-ECDSA COLD setup performs

faster in Firefox browsers. Nevertheless, fetching a new root certificate is a one-time

cost. As more TLS servers deploy ECDSA certificate chains, clients will eventually have

downloaded the ECDSA root certificate after visiting any of those sites and will have

payed off this one-time cost.

6.3 Discussion

6.3.1 Forward secrecy is free

Our experiments suggest that the performance-based arguments against deploying forward

secrecy are no longer valid. ECDHE-based key exchange, which provides forward secrecy,

can be faster than basic RSA-2048 key exchange which does not. The reason for the

performance improvement is the replacement of an expensive RSA-2048 decryption with

faster secp256r1 elliptic curve operations. As we transition to longer RSA keys, such as
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RSA-3072 or RSA-4096, the performance advantage of ECDHE will become even more

pronounced. These results suggest that sites should migrate to ECDHE for both security

and performance reasons.

6.3.2 RSA vs. ECDSA authentication

A common practice today for deploying ECDHE-based forward secrecy is to use elliptic

curves for key exchange, but use RSA signatures for server-side authentication. From a

security standpoint this is an undesirable setup: a weakness discovered in either algorithm

will defeat the security of TLS at the site. A-priori, the likelihood of a weakness discovered

in one of two algorithms is far greater than the likelihood of an attack on a single algorithm.

Consequently, due to the desire to move to ECDHE key exchange, there is a strong

argument for sites to move to certificates for ECDSA public keys.

To understand the risk of using both RSA and ECDHE (called ECDHE-RSA) com-

pared to only relying on elliptic curve cryptography (as in ECDHE-ECDSA), consider the

following three possibilities:

1. both RSA and the NIST curve secp256r1 provide adequate security,

2. curve secp256r1 is secure, but RSA is not,

3. RSA is secure, but curve secp256r1 is not.

In Case 1, both ECDHE-RSA and ECDHE-ECDSA are secure. In Case 3, both ECDHE-

RSA and ECDHE-ECDSA are insecure. However, in Case 2, ECDHE-RSA is insecure but

ECDHE-ECDSA is still secure. Table 6.2 lists the resulting security of ECDHE-RSA and

ECDHE-ECDSA in each of the three cases. The table suggests that ECDHE-ECDSA

incurs less risk than ECDHE-RSA since there is a scenario where ECDHE-ECDSA is

secure, but ECDHE-RSA is not. The converse cannot happen. Given the desire to
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ECDHE-RSA ECDHE-ECDSA
RSA and secp256r1 both secure secure secure
secp256r1 secure, RSA insecure insecure secure
RSA secure, secp256r1 insecure insecure insecure

Table 6.2: Comparing ECDHE-RSA and ECDHE-ECDSA

use ECDHE, this is an argument for moving to elliptic curve public keys for server-side

authentication.

To properly move to ECDSA signatures, CAs will need to sign those certificates with

ECDSA signatures along the entire certification chain. The security of TLS key exchange

will then only depend on the hardness of a single algebraic problem instead of two. Only

time will tell whether the elliptic curve discrete logarithm problem (on the NIST curve

secp256r1) is indeed as hard as we currently believe.

Note that moving to ECDSA public keys means that during the ECDHE key exchange

the server will need to generate an ECDSA signature. The ECDSA signature algorithm

requires strong randomness: bias in the random generator can lead to exposure of the

secret signing key [122]. Therefore, when moving to ECDSA public keys servers will

need to ensure an adequate source of randomness. An alternative proposal, which is

not frequently used, is to derive the ECDSA randomness by applying a pseudo-random

function such as HMAC to the message to be signed, where the PRF secret key is stored

along with the signing key.

6.4 Related Work

Coarfa et al. [25] profiled TLS web servers with trace-driven workloads in 2002, showing

that the largest performance cost on the TLS web server is from the RSA operations, and

suggested that TLS overhead will diminish as CPUs become faster. Gupta et al. [123]
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showed that TLS server throughput can increase by 11% to 31% when using ECDSA sig-

natures (with fixed ECDH key exchange) over RSA signatures (with RSA key exchange).

Note that none of the measured cipher suites support forward secrecy. Bernat [124] eval-

uated RSA, DHE and ECDHE key exchanges over 1,000 handshakes and reported a 15%

server overhead for using ECDHE-256 over RSA-2048 key exchange. All of the mea-

surements used RSA signatures, and not ECDSA signatures. Our controlled experiment

concurs with previous studies while providing data points for a wider range of cipher suites

that are currently recommended. Our ad experiment is the first to measure client-side

TLS latencies in real-world.



Chapter 7

Conclusion

In this thesis, we focused on new real-world measurements of misbehaving intermediaries

in the wild, and new efforts to improve web security by reducing the cost of TLS. The

contributions of this thesis include:

• We demonstrate a new class of attacks that poisons the HTTP caches of transparent

proxies. Our ad experiments indicate that roughly 7% of Internet users are vulnera-

ble to Auger’s IP hijacking attacks, while 0.2% are vulnerable to our cache poisoning

attacks. In response, the HTML5 WebSocket protocol has adopted a variant of our

proposal to prevent these attacks.

• We introduce a method for websites to detect TLS man-in-the-middle attacks. We

conduct the first analysis of forged TLS certificates in the wild, by measuring over

3 million TLS connections on a popular global website. Our results indicate that

0.2% of the TLS connections analyzed were tampered with forged certificates.

• We propose certificate prefetching and prevalidation in browsers to significantly

speed up the full TLS handshake. We evaluate OCSP responders in the wild, in-

cluding measurements of the response times and validity durations.

124
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• We demonstrate the feasibility of short-lived certificates, which ensures that certifi-

cate authorities can control revocation, without imposing a performance penalty.

• We provide a performance evaluation of various TLS cipher suites for servers that

support forward secrecy. We conduct the first ad experiment to measure client-side

TLS connection times of various TLS cipher suites.
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